Entropy and the localization of eigenfunctions

被引:78
作者
Anantharaman, Nalini [1 ]
机构
[1] Ecole Normale Super Lyon, F-69364 Lyon, France
关键词
D O I
10.4007/annals.2008.168.435
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the large eigenvalue limit for the eigenfunctions of the Laplacian, on a compact manifold of negative curvature - in fact, we only assume that the geodesic flow has the Anosov property. In the semi-classical limit, we prove that the Wigner measures associated to eigenfunctions have positive metric entropy. In particular, they cannot concentrate entirely on closed geodesics.
引用
收藏
页码:435 / 475
页数:41
相关论文
共 22 条
[1]  
Anantharaman N, 2004, J EUR MATH SOC, V6, P207
[2]  
ANANTHARAMAN N, SEMICLASSICAL ENTROP
[3]  
[Anonymous], 1994, ANAL LINEAR PARTIAL
[4]   EQUIVALENCE OF UNIFORM HYPERBOLICITY FOR SYMPLECTIC TWIST MAPS AND PHONON GAP FOR FRENKEL-KONTOROVA MODELS [J].
AUBRY, S ;
MACKAY, RS ;
BAESENS, C .
PHYSICA D, 1992, 56 (2-3) :123-134
[5]   WAVE-EQUATION ON A COMPACT RIEMANNIAN MANIFOLD WITHOUT CONJUGATE POINTS [J].
BERARD, PH .
MATHEMATISCHE ZEITSCHRIFT, 1977, 155 (03) :249-276
[6]  
Bonechi F, 2003, DUKE MATH J, V117, P571
[7]   Entropy of quantum limits [J].
Bourgain, J ;
Lindenstrauss, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (01) :153-171
[8]  
Bouzouina A, 2002, DUKE MATH J, V111, P223
[9]  
DEVERDIERE YC, 1985, COMMUN MATH PHYS, V102, P497
[10]  
Dimassi M., 1999, LONDON MATH SOC LECT, V268