A random walk on rectangles algorithm

被引:38
作者
Deaconu, M
Lejay, A
机构
[1] INRIA Lorraine, Project OMEGA, F-54506 Vandoeuvre Les Nancy, France
[2] Inst Elie Cartan Nancy, F-54506 Vandoeuvre Les Nancy, France
关键词
Monte Carlo method; Laplace operator; tandom walk on spheres/squares; Green functions; Dirichlet/Neumann problem;
D O I
10.1007/s11009-006-7292-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we introduce an algorithm that simulates efficiently the first exit time and position from a rectangle (or a parallelepiped) for a Brownian motion that starts at any point inside. This method provides an exact way to simulate the first exit time and position from any polygonal domain and then to solve some Dirichlet problems, whatever the dimension. This method can be used as a replacement or complement of the method of the random walk on spheres and can be easily adapted to deal with Neumann boundary conditions or Brownian motion with a constant drift.
引用
收藏
页码:135 / 151
页数:17
相关论文
共 21 条
[1]  
Beck J., 1992, SERIES COMPUTATIONAL
[2]  
BREIMAN L, 1981, PROBABILITY
[3]  
Campillo F., 2002, Monte Carlo Methods and Applications, V8, P129, DOI 10.1515/mcma.2002.8.2.129
[4]   A MONTE-CARLO METHOD FOR POISSON EQUATION [J].
DELAURENTIS, JM ;
ROMERO, LA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 90 (01) :123-140
[5]  
Devroye L., 1986, NONUNIFORM RANDOM VA
[6]  
EASTHAM MSP, 1970, THEORY ORDINARY DIFF
[7]  
Golyandina N., 2004, Monte Carlo Methods and Applications, V10, P287, DOI 10.1515/mcma.2004.10.3-4.287
[8]  
HWANG CO, 2001, MATH COMPUT SIMULAT, V62, P347
[9]   On the transition densities for reflected diffusions [J].
Linetsky, V .
ADVANCES IN APPLIED PROBABILITY, 2005, 37 (02) :435-460
[10]  
MAIRE S, 2001, THESIS U TOULON VAR