A nonconforming finite element method for the Stokes equations using the Crouzeix-Raviart element for the velocity and the standard linear element for the pressure

被引:6
作者
Lamichhane, Bishnu P. [1 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
关键词
Stokes equations; mixed finite elements; Crouzeix-Raviart element; nonconforming method; inf-sup condition;
D O I
10.1002/fld.3848
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a finite element method for Stokes equations using the Crouzeix-Raviart element for the velocity and the continuous linear element for the pressure. We show that the inf-sup condition is satisfied for this pair. Two numerical experiments are presented to support the theoretical results. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:222 / 228
页数:7
相关论文
共 10 条
[1]   Stabilization of low-order mixed finite elements for the Stokes equations [J].
Bochev, PB ;
Dohrmann, CR ;
Gunzburger, MD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :82-101
[2]  
Brenner S. C., 2007, MATH THEORY FINITE E
[3]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[4]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[5]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[6]   On the accuracy of the finite volume element method based on piecewise linear polynomials [J].
Ewing, RE ;
Lin, T ;
Lin, YP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :1865-1888
[7]  
Girault V., 2012, Finite Element Methods for NavierStokes Equations: Theory and Algorithms
[8]   Inf-sup stable finite-element pairs based on dual meshes and bases for nearly incompressible elasticity [J].
Lamichhane, Bishnu P. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (02) :404-420
[9]  
Lamichhane BP, 2008, ANZIAM J, V50
[10]   A new local stabilized nonconforming finite element method for the Stokes equations [J].
Li, Jian ;
Chen, Zhangxin .
COMPUTING, 2008, 82 (2-3) :157-170