GPU accelerated adaptive banded event alignment for rapid comparative nanopore signal analysis

被引:73
作者
Gamaarachchi, Hasindu [1 ,2 ]
Lam, Chun Wai [1 ]
Jayatilaka, Gihan [3 ]
Samarakoon, Hiruna [3 ]
Simpson, Jared T. [4 ,5 ]
Smith, Martin A. [2 ,6 ,7 ,8 ]
Parameswaran, Sri [1 ]
机构
[1] UNSW Sydney, Sch Comp Sci & Engn, Sydney, NSW, Australia
[2] Garvan Inst Med Res, Kinghorn Ctr Clin Genom, Sydney, NSW, Australia
[3] Univ Peradeniya, Dept Comp Engn, Peradeniya, Sri Lanka
[4] Ontario Inst Canc Res, Toronto, ON, Canada
[5] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[6] UNSW Sydney, St Vincents Clin Sch, Fac Med, Sydney, NSW, Australia
[7] CHU St Justine Res Ctr, Montreal, PQ, Canada
[8] Univ Montreal, Fac Med, Dept Biochem & Mol Med, Montreal, PQ, Canada
关键词
Nanopore; Signal alignment; Event alignment; Methylation; GPU; GPU acceleration; Optimisation; SoC; Nanopolish; f5c; GENOME;
D O I
10.1186/s12859-020-03697-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Nanopore sequencing enables portable, real-time sequencing applications, including point-of-care diagnostics and in-the-field genotyping. Achieving these outcomes requires efficient bioinformatic algorithms for the analysis of raw nanopore signal data. However, comparing raw nanopore signals to a biological reference sequence is a computationally complex task. The dynamic programming algorithm called Adaptive Banded Event Alignment (ABEA) is a crucial step in polishing sequencing data and identifying non-standard nucleotides, such as measuring DNA methylation. Here, we parallelise and optimise an implementation of the ABEA algorithm (termedf5c) to efficiently run on heterogeneous CPU-GPU architectures. Results: By optimising memory, computations and load balancing between CPU and GPU, we demonstrate howf5ccan perform similar to 3-5 x faster than an optimised version of the original CPU-only implementation of ABEA in theNanopolishsoftware package. We also show thatf5cenables DNA methylation detection on-the-fly using an embedded System on Chip (SoC) equipped with GPUs. Conclusions: Our work not only demonstrates that complex genomics analyses can be performed on lightweight computing systems, but also benefits High-Performance Computing (HPC). The associated source code forf5calong with GPU optimised ABEA is available at https://github.com/hasindu2008/f5c.
引用
收藏
页数:13
相关论文
共 20 条
[1]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[2]  
CHAO KM, 1992, COMPUT APPL BIOSCI, V8, P481
[3]  
Chase R., 2013, CONFIGURE LINUX OUT
[4]   DPMIND: degradome-based plant miRNA-target interaction and network database [J].
Fei, Yuhan ;
Wang, Rui ;
Li, Haoyuan ;
Liu, Shu ;
Zhang, Hongsheng ;
Huang, Ji .
BIOINFORMATICS, 2018, 34 (09) :1618-1620
[5]   Accelerating Long Read Alignment on Three Processors [J].
Feng, Zonghao ;
Qiu, Shuang ;
Wang, Lipeng ;
Luo, Qiong .
PROCEEDINGS OF THE 48TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP 2019), 2019,
[6]   Featherweight long read alignment using partitioned reference indexes [J].
Gamaarachchi, Hasindu ;
Parameswaran, Sri ;
Smith, Martin A. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[7]   Nanopore sequencing and assembly of a human genome with ultra-long reads [J].
Jain, Miten ;
Koren, Sergey ;
Miga, Karen H. ;
Quick, Josh ;
Rand, Arthur C. ;
Sasani, Thomas A. ;
Tyson, John R. ;
Beggs, Andrew D. ;
Dilthey, Alexander T. ;
Fiddes, Ian T. ;
Malla, Sunir ;
Marriott, Hannah ;
Nieto, Tom ;
O'Grady, Justin ;
Olsen, Hugh E. ;
Pedersen, Brent S. ;
Rhie, Arang ;
Richardson, Hollian ;
Quinlan, Aaron R. ;
Snutch, Terrance P. ;
Tee, Louise ;
Paten, Benedict ;
Phillippy, Adam M. ;
Simpson, Jared T. ;
Loman, Nicholas J. ;
Loose, Matthew .
NATURE BIOTECHNOLOGY, 2018, 36 (04) :338-+
[8]  
Liu Y, 2006, INT C COMP SCI
[9]   CUDASW++: Optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units [J].
Liu Y. ;
Maskell D.L. ;
Schmidt B. .
BMC Research Notes, 2 (1)
[10]  
Loman NJ, 2015, NAT METHODS, V12, P733, DOI [10.1038/NMETH.3444, 10.1038/nmeth.3444]