Do High-spin High-mass X-Ray Binaries Contribute to the Population of Merging Binary Black Holes?

被引:19
作者
Gallegos-Garcia, Monica [1 ,2 ]
Fishbach, Maya [2 ]
Kalogera, Vicky [1 ,2 ]
Berry, Christopher P. L. [2 ,3 ]
Doctor, Zoheyr [2 ]
机构
[1] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Ctr Interdisciplinary Explorat & Res Astrophys CI, 1800 Sherman, Evanston, IL 60201 USA
[3] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland
关键词
STELLAR EVOLUTION; COMPACT OBJECTS; STARS; ACCRETION; MERGERS; RATES;
D O I
10.3847/2041-8213/ac96ef
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gravitational-wave observations of binary black hole (BBH) systems point to black hole spin magnitudes being relatively low. These measurements appear in tension with high spin measurements for high-mass X-ray binaries (HMXBs). We use grids of MESA simulations combined with the rapid population-synthesis code COSMIC to examine the origin of these two binary populations. It has been suggested that Case-A mass transfer while both stars are on the main sequence can form high-spin BHs in HMXBs. Assuming this formation channel, we show that depending on the critical mass ratios for the stability of mass transfer, 48%-100% of these Case-A HMXBs merge during the common-envelope phase and up to 42% result in binaries too wide to merge within a Hubble time. Both MESA and COSMIC show that high-spin HMXBs formed through Case-A mass transfer can only form merging BBHs within a small parameter space where mass transfer can lead to enough orbital shrinkage to merge within a Hubble time. We find that only up to 11% of these Case-A HMXBs result in BBH mergers, and at most 20% of BBH mergers came from Case-A HMXBs. Therefore, it is not surprising that these two spin distributions are observed to be different.
引用
收藏
页数:9
相关论文
共 92 条
[1]   GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run [J].
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, A. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akcay, S. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Arun, K. G. ;
Asali, Y. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Babak, S. ;
Badaracco, F. .
PHYSICAL REVIEW X, 2021, 11 (02)
[2]  
Abbott R., arXiv
[3]  
Abbott R., 2021, arXiv
[4]  
Abbott R., 2021, arXiv:2010.14533, V913, pL7, DOI DOI 10.3847/1538-4357/AC5F04
[5]   Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Nonprecessing Spins [J].
Ajith, P. ;
Hannam, M. ;
Husa, S. ;
Chen, Y. ;
Bruegmann, B. ;
Dorband, N. ;
Mueller, D. ;
Ohme, F. ;
Pollney, D. ;
Reisswig, C. ;
Santamaria, L. ;
Seiler, J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (24)
[6]  
[Anonymous], 2016, AA, V594, pA13, DOI [10.1051/0004-6361/201321591, DOI 10.1051/0004-6361/201321591]
[7]   Numerical simulations of the random angular momentum in convection: Implications for supergiant collapse to form black holes [J].
Antoni, Andrea ;
Quataert, Eliot .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 511 (01) :176-197
[8]   The Chemical Composition of the Sun [J].
Asplund, Martin ;
Grevesse, Nicolas ;
Sauval, A. Jacques ;
Scott, Pat .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 47, 2009, 47 :481-522
[9]  
Batta A, 2019, Arxiv, DOI [arXiv:1904.04835, DOI 10.48550/ARXIV.1904.04835]
[10]   The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries [J].
Batta, Aldo ;
Ramirez-Ruiz, Enrico ;
Fryer, Chris .
ASTROPHYSICAL JOURNAL LETTERS, 2017, 846 (02)