SAR Image Despeckling Using Pre-trained Convolutional Neural Network Models

被引:0
作者
Yang, Xiangli [1 ,2 ]
Denis, Loic [3 ]
Tupin, Florence [1 ]
Yang, Wen [2 ]
机构
[1] Univ Paris Saclay, Telecom ParisTech, LTCI, Paris, France
[2] Wuhan Univ, Elect Informat Sch, Wuhan, Peoples R China
[3] Univ Lyon, UJM St Etienne, CNRS, Grad Sch,Inst Opt,Lab Hubert Curien,UMR 5516, F-42023 St Etienne, France
来源
2019 JOINT URBAN REMOTE SENSING EVENT (JURSE) | 2019年
基金
中国国家自然科学基金;
关键词
SAR; image despeckling; convolutional neural networks; pre-trained models;
D O I
10.1109/jurse.2019.8809023
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Despeckling is a longstanding topic in synthetic aperture radar (SAR) imaging. Many different schemes have been proposed for the restoration of SAR images. Among the different possible strategies, the methods based on convolutional neural networks (CNNs) have shown to produce state-of-the-art results on SAR image restoration. However, to learn an effective model it is necessary to collect a large number of speckle-free SAR images for training. To bypass this problem, we propose to directly use pre-trained CNN models on additive white Gaussian noise (AWGN) and transfer them to process SAR speckle. To include such CNNs Gaussian denoisers, we use the multi-channel logarithm approach with Gaussian denoising (MuLoG). Experimental results, both on synthetic and real SAR data, show the method achieves good performance.
引用
收藏
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 1994, Remote Sens. Rev., DOI DOI 10.1080/02757259409532206
[2]   A variational approach to removing multiplicative noise [J].
Aubert, Gilles ;
Aujol, Jean-Francois .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (04) :925-946
[3]  
Boulch A., 2017, IEEE INT GEOSC REM S
[4]   Plug-and-Play ADMM for Image Restoration: Fixed-Point Convergence and Applications [J].
Chan, Stanley H. ;
Wang, Xiran ;
Elgendy, Omar A. .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2017, 3 (01) :84-98
[5]  
Chierchia G, 2017, INT GEOSCI REMOTE SE, P5438, DOI 10.1109/IGARSS.2017.8128234
[6]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[7]   MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction? [J].
Deledalle, Charles-Alban ;
Denis, Loic ;
Tabti, Sonia ;
Tupin, Florence .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) :4389-4403
[8]   NL-SAR: A Unified Nonlocal Framework for Resolution-Preserving (Pol)(In)SAR Denoising [J].
Deledalle, Charles-Alban ;
Denis, Loic ;
Tupin, Florence ;
Reigber, Andreas ;
Jaeger, Marc .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (04) :2021-2038
[9]   SAR Image Regularization With Fast Approximate Discrete Minimization [J].
Denis, Loic ;
Tupin, Florence ;
Darbon, Jerome ;
Sigelle, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (07) :1588-1600
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90