Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials

被引:25
作者
Luk, Ting S. [1 ,2 ]
Kim, Iltai [1 ,2 ]
Campione, Salvatore [3 ]
Howell, Stephen W. [1 ]
Subramania, Ganapathi S. [1 ]
Grubbs, Robert K. [1 ]
Brener, Igal [1 ,2 ]
Chen, Hou-Tong [4 ]
Fan, Shanhui [5 ]
Sinclair, Michael B. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87123 USA
[2] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA
[3] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA
[4] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[5] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA
来源
OPTICS EXPRESS | 2013年 / 21卷 / 09期
关键词
OPTICAL HYPERLENS; NANOSCALE; RANGE; FILMS; LIMIT;
D O I
10.1364/OE.21.011107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate experimentally signatures and dispersion control of surface plasmon polaritons from 1 to 1.8 mu m using periodic multilayer metallo-dielectric hyperbolic metamaterials. The fabricated structures are comprised of smooth films with very low metal filling factor. The measured dispersion properties of these hyperbolic metamaterials agree well with calculations using transfer matrix, finite-difference time-domain, and effective medium approximation methods despite using only 2.5 periods. The enhancement factor in the local photonic density of states from the studied samples in the near-infrared wavelength region is determined to be 2.5-3.5. Development of this type of metamaterial is relevant to subwavelength imaging, spontaneous emission and thermophotovoltaic applications. (C) 2013 Optical Society of America
引用
收藏
页码:11107 / 11114
页数:8
相关论文
共 49 条
[1]   Highly confined optical modes in nanoscale metal-dielectric multilayers [J].
Avrutsky, Ivan ;
Salakhutdinov, Ildar ;
Elser, Justin ;
Podolskiy, Viktor .
PHYSICAL REVIEW B, 2007, 75 (24)
[2]   Review of near-field thermal radiation and its application to energy conversion [J].
Basu, S. ;
Zhang, Z. M. ;
Fu, C. J. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2009, 33 (13) :1203-1232
[3]   Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field [J].
Biehs, S. -A. ;
Tschikin, M. ;
Ben-Abdallah, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (10)
[4]   Low-Loss Plasmonic Metamaterials [J].
Boltasseva, Alexandra ;
Atwater, Harry A. .
SCIENCE, 2011, 331 (6015) :290-291
[5]  
Cai W, 2010, OPTICAL METAMATERIALS: FUNDAMENTALS AND APPLICATIONS, P1, DOI 10.1007/978-1-4419-1151-3
[6]   Super-resolution imaging using a three-dimensional metamaterials nanolens [J].
Casse, B. D. F. ;
Lu, W. T. ;
Huang, Y. J. ;
Gultepe, E. ;
Menon, L. ;
Sridhar, S. .
APPLIED PHYSICS LETTERS, 2010, 96 (02)
[7]   Drude Relaxation Rate in Grained Gold Nanoantennas [J].
Chen, Kuo-Ping ;
Drachev, Vladimir P. ;
Borneman, Joshua D. ;
Kildishev, Alexander V. ;
Shalaev, Vladimir M. .
NANO LETTERS, 2010, 10 (03) :916-922
[8]   Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing [J].
Chen, W. ;
Chen, K. P. ;
Thoreson, M. D. ;
Kildishev, A. V. ;
Shalaev, V. M. .
APPLIED PHYSICS LETTERS, 2010, 97 (21)
[9]   Quantum nanophotonics using hyperbolic metamaterials [J].
Cortes, C. L. ;
Newman, W. ;
Molesky, S. ;
Jacob, Z. .
JOURNAL OF OPTICS, 2012, 14 (06)
[10]   Conversion of broadband to narrowband thermal emission through energy recycling [J].
De Zoysa, Menaka ;
Asano, Takashi ;
Mochizuki, Keita ;
Oskooi, Ardavan ;
Inoue, Takuya ;
Noda, Susumu .
NATURE PHOTONICS, 2012, 6 (08) :535-539