NODAL SOLUTIONS TO CRITICAL GROWTH ELLIPTIC PROBLEMS UNDER STEKLOV BOUNDARY CONDITIONS

被引:7
|
作者
Berchio, Elvise [1 ]
Gazzola, Filippo [2 ]
Pierotti, Dario [2 ]
机构
[1] Univ Piemonte Orientale, Dipartimento SEMEQ, I-28100 Novara, Italy
[2] Dipartmento Matemat Politecn, I-20133 Milan, Italy
关键词
Critical growth; nodal solutions; Steklov; CRITICAL SOBOLEV EXPONENTS; EQUATIONS;
D O I
10.3934/cpaa.2009.8.533
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study elliptic problems at critical growth under Steklov boundary conditions in bounded domains. For a second order problem we prove existence of nontrivial nodal solutions. These are obtained by combining a suitable linking argument with fine estimates on the concentration of Sobolev minimizers on the boundary. When the domain is the unit ball, we obtain a multiplicity result by taking advantage of the explicit form of the Steklov eigenfunctions. We also partially extend the results in the ball to the case of fourth order Steklov boundary value problems.
引用
收藏
页码:533 / 557
页数:25
相关论文
共 50 条
  • [1] Positive solutions to critical growth biharmonic elliptic problems under Steklov boundary conditions
    Gazzola, Filippo
    Pierotti, Dario
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 232 - 238
  • [2] Gelfand type elliptic problems under Steklov boundary conditions
    Berchio, Elvise
    Gazzola, Filippo
    Pierotti, Dario
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01): : 315 - 335
  • [3] Nodal Blow-Up Solutions to Slightly Subcritical Elliptic Problems with Hardy-Critical Term
    Bartsch, Thomas
    Guo, Qianqiao
    ADVANCED NONLINEAR STUDIES, 2017, 17 (01) : 55 - 85
  • [4] On a class of critical p(x)-Laplacian type problems with Steklov boundary conditions
    Allaoui, Mostafa
    Darhouche, Omar
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (02) : 995 - 1011
  • [5] Layer Profiles of Solutions to Elliptic Problems under Parameter-Dependent Boundary Conditions
    Garcia-Melian, Jorge
    Rossi, Julio D.
    Sabina de Lis, Jose C.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2010, 29 (04): : 451 - 467
  • [6] Positive and sign-changing solutions for a quasilinear Steklov nonlinear boundary problem with critical growth
    Cuesta, Mabel
    Leadi, Liamidi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (01):
  • [7] Existence of Multiple Solutions for Certain Quasilinear Elliptic Problems Under Flux Boundary Conditions
    Ahmed, Ahmed
    Ahmedatt, Taghi
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [8] Nodal solutions for fractional elliptic equations involving exponential critical growth
    de Souza, Manasses
    Batista Severo, Uberlandio
    Luiz do Rego, Thiago
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3650 - 3672
  • [9] Least energy nodal solutions of Hamiltonian elliptic systems with Neumann boundary conditions
    Saldana, Alberto
    Tavares, Hugo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (12) : 6127 - 6165
  • [10] Multiple Solutions of Semilinear Elliptic Problems with Degenerate Boundary Conditions
    Taira, Kazuaki
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (02) : 731 - 752