Ruthenium decorated single walled carbon nanotube for molecular hydrogen storage: A first-principle study

被引:42
作者
Verdinelli, Valeria [1 ]
Juan, Alfredo [2 ]
German, Estefania [2 ,3 ]
机构
[1] UNS, CONICET, Dept Quim, IFISUR, Av LN Alem 1253,B8000CPB, Bahia Blanca, Buenos Aires, Argentina
[2] UNS, CONICET, Dept Fis, IFISUR, Av LN Alem 1253,B8000CPB, Bahia Blanca, Buenos Aires, Argentina
[3] Univ Valladolid, Dept Fis Teor Atom & Opt, Paseo Belen 7, E-47011 Valladolid, Spain
关键词
H-2; storage; SWCNT; Ruthenium; DFT; ADSORPTION; WAVE; RU; H-2; CHEMISORPTION; GRAPHENE; SURFACE;
D O I
10.1016/j.ijhydene.2019.02.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular hydrogen storage on Ruthenium (Ru) decorated single-walled carbon nanotube (SWCNT) has been studied by using spin-polarized density functional theory (DFT). When a Ru atom is adsorbed on SWCNT, the Bader analysis reveals that Ru transfers a charge of 0.44e to SWCNT. Accordingly, Ru acts as adsorption center for H-2 molecules; thus, it can hold up to four H-2 molecules with an adsorption energy (E-ads) of -0.93 eV/H-2. A uniform addition of Ru atoms on SWCNT shows that this nanomaterial can adsorb up to five Ru without clustering. Each Ru atom of 5Ru-decorated SWCNT system can bind up to four H-2 molecules involving an Eads of -0.83 eV/H-2. After H-2 molecules adsorption, Ru atoms shifted from a near hollow site to a bridge site. Moreover, Ru-decorated systems reduce their magnetic moment when the number of H-2 molecules increase from 2 mu(B) to 0 mu(B). (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8376 / 8383
页数:8
相关论文
共 58 条
[1]   Chemisorption of Transition-Metal Atoms on Boron- and Nitrogen-Doped Carbon Nanotubes: Energetics and Geometric and Electronic Structures [J].
An, Wei ;
Turner, C. Heath .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (17) :7069-7078
[2]  
Bader R. F., 1990, ENCY COMPUTATIONAL C
[3]   Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes [J].
Barghi, Seyed Hamed ;
Tsotsis, Theodore T. ;
Sahimi, Muhammad .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (03) :1390-1397
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J].
Chen, P ;
Wu, X ;
Lin, J ;
Tan, KL .
SCIENCE, 1999, 285 (5424) :91-93
[6]   Hydrogen storage in carbon nanotubes [J].
Cheng, HM ;
Yang, QH ;
Liu, C .
CARBON, 2001, 39 (10) :1447-1454
[7]   Synthesis of microporous boron-substituted carbon (B/C) materials using polymeric precursors for hydrogen physisorption [J].
Chung, T. C. Mike ;
Jeong, Youmi ;
Chen, Qiang ;
Kleinhammes, Alked ;
Wu, Yue .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (21) :6668-+
[8]   Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes [J].
Dag, S ;
Ozturk, Y ;
Ciraci, S ;
Yildirim, T .
PHYSICAL REVIEW B, 2005, 72 (15)
[9]   Demands on energy storage for renewable power sources [J].
Dostal, Zdenek ;
Ladanyi, Libor .
JOURNAL OF ENERGY STORAGE, 2018, 18 :250-255
[10]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337