Strong convergence for maximal monotone operators, relatively quasi-nonexpansive mappings, variational inequalities and equilibrium problems

被引:6
作者
Saewan, Siwaporn [1 ]
Kumam, Poom [2 ]
Cho, Yeol Je [3 ,4 ]
机构
[1] Thaksin Univ TSU, Fac Sci, Dept Math & Stat, Phat Tha Lung, Thailand
[2] KMUTT, Fac Sci, Dept Math, Bangkok 10140, Thailand
[3] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[4] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
基金
新加坡国家研究基金会;
关键词
Hybrid projection method; Inverse-strongly monotone operator; Variational inequality; Equilibrium problem; Relatively quasi-nonexpansive mapping; Maximal monotone operator; FIXED-POINT PROBLEMS; WEAK-CONVERGENCE; GENERALIZED EQUILIBRIUM; ITERATIVE METHOD; HYBRID METHODS; THEOREMS; APPROXIMATION; EXISTENCE;
D O I
10.1007/s10898-012-0030-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce a new hybrid iterative scheme for finding a common element of the set of zeroes of a maximal monotone operator, the set of fixed points of a relatively quasi-nonexpansive mapping, the sets of solutions of an equilibrium problem and the variational inequality problem in Banach spaces. As applications, we apply our results to obtain strong convergence theorems for a maximal monotone operator and quasi-nonexpansive mappings in Hilbert spaces and we consider a problem of finding a minimizer of a convex function.
引用
收藏
页码:1299 / 1318
页数:20
相关论文
共 44 条
[1]  
Alber Y. I., 1994, PANAMERICAN MATH J, V4, P39
[2]  
Alber Y.I., 1996, LECT NOTES PURE APPL, P15
[3]  
Blum E., 1994, Math. Stud., V63, P127
[4]   Weak convergence of orbits of nonlinear operators in reflexive Banach [J].
Butnariu, D ;
Reich, S ;
Zaslavski, AJ .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (5-6) :489-508
[5]  
Butnariu D., 2001, J APPL ANAL, V7, P151, DOI DOI 10.1515/JAA.2001.151
[6]  
Censor Y., 1996, Optimization, V37, P323, DOI 10.1080/02331939608844225
[7]   On Chidume's open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces [J].
Chang, SS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 216 (01) :94-111
[8]   On the System of Nonlinear Mixed Implicit Equilibrium Problems in Hilbert Spaces [J].
Cho, Yeol Je ;
Petrot, Narin .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
[9]   Approximation methods for common solutions of generalized equilibrium, systems of nonlinear variational inequalities and fixed point problems [J].
Cho, Yeol Je ;
Argyros, Loannis K. ;
Petrot, Narin .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (08) :2292-2301
[10]   Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems [J].
Cho, Yeol Je ;
Qin, Xiaolong ;
Kang, Jung Im .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) :4203-4214