Optimum Estimation of Rain Microphysical Parameters From X-Band Dual-Polarization Radar Observables

被引:44
作者
Kalogiros, John [1 ]
Anagnostou, Marios N. [1 ,2 ]
Anagnostou, Emmanouil N. [3 ]
Montopoli, Mario [4 ,5 ]
Picciotti, Errico [6 ]
Marzano, Frank Silvio [2 ,6 ]
机构
[1] Natl Observ Athens, Inst Environm Res & Sustainable Dev, Athens 11810, Greece
[2] Univ Roma La Sapienza, Dept Informat Engn, I-00185 Rome, Italy
[3] Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA
[4] Univ Cambridge, Dept Geog, Cambridge CB2 1TN, England
[5] Univ Aquila, Ctr Eccellenza Integraz Tecn Telerilevamento & Mo, Ctr Excellence, I-67040 Laquila, Italy
[6] Univ Aquila, CETEMPS Ctr Excellence, I-67040 Laquila, Italy
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2013年 / 51卷 / 05期
关键词
Dual-polarization weather radar; parameterization algorithms; rain microphysics; X-band; POLARIMETRIC WEATHER RADAR; DROP SIZE DISTRIBUTION; DIFFERENTIAL REFLECTIVITY; DISTRIBUTIONS; ATTENUATION; DISDROMETER; MODEL;
D O I
10.1109/TGRS.2012.2211606
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Modern polarimetric weather radars typically provide reflectivity, differential reflectivity, and specific differential phase shift, which are used in algorithms to estimate the parameters of the rain drop size distribution (DSD), the mean drop shape, and rainfall rate. A new method is presented to minimize the parameterization error using the Rayleigh scattering limit relations multiplied with a rational polynomial function of reflectivity-weighted raindrop diameter to approximate the Mie character of scattering. A statistical relation between the shape parameter of the DSD with the median volume diameter of raindrops is derived by exploiting long-term disdrometer observations. On the basis of this relation, new optimal estimators of rain microphysical parameters and rainfall rate are developed for a wide range of rain DSDs and air temperatures using X-band scattering simulations of polarimetric radar observables. Parameterizations of radar specific path attenuation and backscattering phase shift are also developed, which do not depend on this relation. The methodology can, in principle, be applied to other weather radar frequencies. A numerical sensitivity analysis shows that calibration bias and measurement noise in radar measurements are critical factors for the total error in parameters estimation, despite the low parameterization error (less than 5%). However, for the usual errors of radar calibration and measurement noise (of the order of 1 dB, 0.2 dB, and 0.3 deg km(-1) for reflectivity, differential reflectivity, and specific differential propagation phase shift, respectively), the new parameterizations provide a reliable estimation of rain parameters (typically less than 20% error).
引用
收藏
页码:3063 / 3076
页数:14
相关论文
共 42 条
[1]  
Anagnostou EN, 2004, J HYDROMETEOROL, V5, P110, DOI 10.1175/1525-7541(2004)005<0110:HREFXP>2.0.CO
[2]  
2
[3]  
Anagnostou M. N., 2012, J HYDROMETEOROL
[4]  
BEARD KV, 1983, J ATMOS SCI, V40, P448, DOI 10.1175/1520-0469(1983)040<0448:RC>2.0.CO
[5]  
2
[6]  
BEARD KV, 1987, J ATMOS SCI, V44, P1509, DOI 10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO
[7]  
2
[8]  
Brandes EA, 2003, J APPL METEOROL, V42, P652, DOI 10.1175/1520-0450(2003)042<0652:AEOADD>2.0.CO
[9]  
2
[10]  
Bringi V. N., 2001, Polarimetric Doppler Weather Radar: Principles and Applications, DOI DOI 10.1017/CBO9780511541094