Dissipation Layers in Rayleigh-Benard Convection: A Unifying View

被引:33
|
作者
Petschel, K. [1 ]
Stellmach, S. [1 ]
Wilczek, M. [2 ]
Luelff, J. [2 ]
Hansen, U. [1 ]
机构
[1] Univ Munster, Inst Geophys, D-48149 Munster, Germany
[2] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
关键词
THERMAL-CONVECTION; NUSSELT NUMBER; PRANDTL NUMBER; SIMULATIONS; MANTLE;
D O I
10.1103/PhysRevLett.110.114502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Boundary layers play an important role in controlling convective heat transfer. Their nature varies considerably between different application areas characterized by different boundary conditions, which hampers a uniform treatment. Here, we argue that, independent of boundary conditions, systematic dissipation measurements in Rayleigh-Benard convection capture the relevant near-wall structures. By means of direct numerical simulations with varying Prandtl numbers, we demonstrate that such dissipation layers share central characteristics with classical boundary layers, but, in contrast to the latter, can be extended naturally to arbitrary boundary conditions. We validate our approach by explaining differences in scaling behavior observed for no-slip and stress-free boundaries, thus paving the way to an extension of scaling theories developed for laboratory convection to a broad class of natural systems. DOI: 10.1103/PhysRevLett.110.114502
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Bistability in Rayleigh-Benard convection with a melting boundary
    Purseed, J.
    Favier, B.
    Duchemin, L.
    Hester, E. W.
    PHYSICAL REVIEW FLUIDS, 2020, 5 (02)
  • [32] Dynamics of plumes in turbulent Rayleigh-Benard convection
    De, A. K.
    Eswaran, V.
    Mishra, P. K.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2018, 72 : 164 - 178
  • [33] Large Prandtl number of the Boussinesq system of Rayleigh-Benard convection
    Wang, XM
    APPLIED MATHEMATICS LETTERS, 2004, 17 (07) : 821 - 825
  • [34] Resolved and subgrid dynamics of Rayleigh-Benard convection
    Togni, Riccardo
    Cimarelli, Andrea
    De Angelis, Elisabetta
    JOURNAL OF FLUID MECHANICS, 2019, 867 : 906 - 933
  • [35] Chaotic travelling rolls in Rayleigh-Benard convection
    Paul, Supriyo
    Kumar, Krishna
    Verma, Mahendra K.
    Carati, Daniele
    De, Arnab K.
    Eswaran, Vinayak
    PRAMANA-JOURNAL OF PHYSICS, 2010, 74 (01): : 75 - 82
  • [36] ANELASTIC VERSUS FULLY COMPRESSIBLE TURBULENT RAYLEIGH-BENARD CONVECTION
    Verhoeven, Jan
    Wiesehoefer, Thomas
    Stellmach, Stephan
    ASTROPHYSICAL JOURNAL, 2015, 805 (01)
  • [37] Heat transfer in turbulent Rayleigh-Benard convection through two immiscible fluid layers
    Liu, Hao-Ran
    Chong, Kai Leong
    Yang, Rui
    Verzicco, Roberto
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2022, 938
  • [38] VORTICITY SCALE AND INTEGRAL VALUES OF RAYLEIGH-BENARD CONVECTION
    Palymskiy, Igor
    COMPUTATIONAL THERMAL SCIENCES, 2014, 6 (02): : 113 - 127
  • [39] Principle of maximum entropy applied to Rayleigh-Benard convection
    Kita, Takafumi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (12)
  • [40] Scaling behaviour in Rayleigh-Benard convection with and without rotation
    King, E. M.
    Stellmach, S.
    Buffett, B.
    JOURNAL OF FLUID MECHANICS, 2013, 717 : 449 - 471