MicroRNA delivery for regenerative medicine

被引:123
作者
Peng, Bo [1 ]
Chen, Yongming [1 ]
Leong, Kam W. [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Chem & Chem Engn, Key Lab Polymer Composite & Funct Mat, Minist Educ, Guangzhou 510275, Guangdong, Peoples R China
[2] Columbia Univ, Dept Biomed Engn, New York, NY 10025 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
MicroRNA; Non-viral vector; Regenerative medicine; Scaffold; Stem cells; Tissue engineering; Viral vector; MESENCHYMAL STEM-CELLS; NANOPARTICLE-MEDIATED DELIVERY; GENE DELIVERY; IN-VIVO; OSTEOGENIC DIFFERENTIATION; NEURONAL DIFFERENTIATION; RNA INTERFERENCE; CARDIOMYOCYTE PROLIFERATION; TRANSGENE EXPRESSION; CARDIAC REGENERATION;
D O I
10.1016/j.addr.2015.05.014
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 122
页数:15
相关论文
共 204 条
[1]   Emerging links between surface nanotechnology and endocytosis: Impact on nonviral gene delivery [J].
Adler, Andrew F. ;
Leong, Kam W. .
NANO TODAY, 2010, 5 (06) :553-569
[2]   Direct Reprogramming of Adult Human Fibroblasts to Functional Neurons under Defined Conditions [J].
Ambasudhan, Rajesh ;
Talantova, Maria ;
Coleman, Ronald ;
Yuan, Xu ;
Zhu, Saiyong ;
Lipton, Stuart A. ;
Ding, Sheng .
CELL STEM CELL, 2011, 9 (02) :113-118
[3]   MIR-206 regulates connexin43 expression during skeletal muscle development [J].
Anderson, Curtis ;
Catoe, Heath ;
Werner, Rudolf .
NUCLEIC ACIDS RESEARCH, 2006, 34 (20) :5863-5871
[4]   Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma [J].
Babar, Imran A. ;
Cheng, Christopher J. ;
Booth, Carmen J. ;
Liang, Xianping ;
Weidhaas, Joanne B. ;
Saltzman, W. Mark ;
Slack, Frank J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (26) :E1695-E1704
[5]   Developing therapeutic microRNAs for cancer [J].
Bader, A. G. ;
Brown, D. ;
Stoudemire, J. ;
Lammers, P. .
GENE THERAPY, 2011, 18 (12) :1121-1126
[6]   The impact of microRNAs on protein output [J].
Baek, Daehyun ;
Villen, Judit ;
Shin, Chanseok ;
Camargo, Fernando D. ;
Gygi, Steven P. ;
Bartel, David P. .
NATURE, 2008, 455 (7209) :64-U38
[7]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[8]   Characterization of Degradable Polyelectrolyte Multilayers Fabricated Using DNA and a Fluorescently-Labeled Poly(β-amino ester): Shedding Light on the Role of the Cationic Polymer in Promoting Surface-Mediated Gene Delivery [J].
Bechler, Shane L. ;
Lynn, David M. .
BIOMACROMOLECULES, 2012, 13 (02) :542-552
[9]   Gene expression and internalization following vector adsorption to immobilized proteins: dependence on protein identity and density [J].
Bengali, Zain ;
Rea, Jennifer C. ;
Shea, Lonnie D. .
JOURNAL OF GENE MEDICINE, 2007, 9 (08) :668-678
[10]   Identification of hundreds of conserved and nonconserved human microRNAs [J].
Bentwich, I ;
Avniel, A ;
Karov, Y ;
Aharonov, R ;
Gilad, S ;
Barad, O ;
Barzilai, A ;
Einat, P ;
Einav, U ;
Meiri, E ;
Sharon, E ;
Spector, Y ;
Bentwich, Z .
NATURE GENETICS, 2005, 37 (07) :766-770