CROUZEIX'S CONJECTURE HOLDS FOR TRIDIAGONAL 3 x 3 MATRICES WITH ELLIPTIC NUMERICAL RANGE CENTERED AT AN EIGENVALUE

被引:10
作者
Glader, Christer [1 ]
Kurula, Mikael [1 ]
Lindstrom, Mikael [1 ]
机构
[1] Abo Akad Univ, Dept Math & Stat, FIN-20500 Turku, Finland
基金
芬兰科学院;
关键词
Crouzeix's conjecture; 3; x; matrix; elliptic numerical range;
D O I
10.1137/17M1110663
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Crouzeix stated the following conjecture in [Integral Equations Operator Theory, 48 (2004), pp. 461-477]: For every n x n matrix A and every polynomial p, parallel to p(A)parallel to <= 2 max(z is an element of)W(A)vertical bar p(z)vertical bar, where W(A) is the numerical range of A. We show that the conjecture holds in its strong, completely bounded form, i.e., where p above is allowed to be any matrix-valued polynomial, for all tridiagonal 3 x 3 matrices with constant main diagonal, [GRAPHICS] , a, b(k), c(k) is an element of C, or equivalently, for all complex 3 x 3 matrices with elliptic numerical range and one eigenvalue at the center of the ellipse. We also extend the main result of Choi in [Linear Algebra Appl., 438 (2013), pp. 3247-3257] slightly.
引用
收藏
页码:346 / 364
页数:19
相关论文
共 17 条
[1]  
[Anonymous], 1950, MATH NACHR
[2]  
[Anonymous], MAX COMP ALG SYST VE
[3]   On matrices with elliptical numerical ranges [J].
Brown, ES ;
Spitkovsky, IM .
LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (3-4) :177-193
[4]   A proof of Crouzeix's conjecture for a class of matrices [J].
Choi, Daeshik .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (08) :3247-3257
[5]  
Choi Daeshik, 2013, THESIS
[6]   Bounds for analytical functions of matrices [J].
Crouzeix, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (04) :461-477
[7]   THE NUMERICAL RANGE IS A (1+√2)-SPECTRAL SET [J].
Crouzeix, M. ;
Palencia, C. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (02) :649-655
[8]   Numerical range and functional calculus in Hilbert space [J].
Crouzeix, Michel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (02) :668-690
[9]   SOME CONSTANTS RELATED TO NUMERICAL RANGES [J].
Crouzeix, Michel .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (01) :420-442
[10]   Crouzeix's conjecture and perturbed Jordan blocks [J].
Greenbaum, Anne ;
Choi, Daeshik .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) :2342-2352