CONVOLUTION IN WEIGHTED LORENTZ SPACES OF TYPE Γ

被引:0
作者
Krepela, Martin [1 ,2 ]
机构
[1] Karlstad Univ, Fac Hlth Sci & Technol, Dept Math & Comp Sci, S-65188 Karlstad, Sweden
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
INEQUALITY; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize boundedness of the convolution operator between weighted Lorentz spaces Gamma(P) (v) and Gamma(q) (w) for the range of parameters p, q is an element of [1, infinity], or p is an element of (0, 1) and q is an element of {1, infinity} or p = infinity and q is an element of (0, 1). We provide Young-type convolution inequalities of the form parallel to f * g parallel to Gamma(q) (omega) <= C parallel to f parallel to Gamma(p) (v) parallel to g parallel to Y, f is an element of Gamma(p)(v), g is an element of Y, characterizing the optimal rearrangement-invariant space Y for which the inequality is satisfied.
引用
收藏
页码:113 / 132
页数:20
相关论文
共 19 条
[1]  
Bennett Colin, 1988, PURE APPL MATH, V129
[2]   CONVOLUTION OF L(P,Q) FUNCTIONS [J].
BLOZINSKI, AP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 32 (01) :237-+
[3]   On embeddings between classical Lorentz spaces [J].
Carro, M ;
Pick, L ;
Soria, J ;
Stepanov, VD .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (03) :397-428
[4]   Are generalized Lorentz "spaces" really spaces? [J].
Cwikel, M ;
Kaminska, A ;
Maligranda, L ;
Pick, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) :3615-3625
[5]   Discretization and anti-discretization of rearrangement-invariant norms [J].
Gogatishvili, A ;
Pick, L .
PUBLICACIONS MATEMATIQUES, 2003, 47 (02) :311-358
[6]   Characterization of associate spaces of weighted Lorentz spaces with applications [J].
Gogatishvili, Amiran ;
Pick, Lubos ;
Soudsky, Filip .
STUDIA MATHEMATICA, 2014, 224 (01) :1-23
[7]  
Gogatishvili A, 2014, POSITIVITY, V18, P319, DOI 10.1007/s11117-013-0246-4
[8]  
Hunt R., 1966, ENSEIGN MATH, V12, P249
[9]   On Lorentz spaces Γp,w [J].
Kaminska, A ;
Maligranda, L .
ISRAEL JOURNAL OF MATHEMATICS, 2004, 140 (1) :285-318
[10]   Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality [J].
Kozono, Hideo ;
Sato, Tokushi ;
Wadade, Hidemitsu .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (06) :1951-1974