Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring

被引:49
作者
Oliveira, Grasielli C. [1 ]
Moccelini, Sally K. [1 ]
Castilho, Marilza [1 ]
Terezo, Ailton J. [1 ]
Possavatz, Juliana [2 ]
Magalhaes, Marcia R. L. [2 ]
Dores, Eliana F. G. C. [2 ]
机构
[1] Univ Fed Mato Grosso, Dept Quim, Grp Eletroquim & Novos Mat, BR-78060900 Cuiaba, MT, Brazil
[2] Univ Fed Mato Grosso, Dept Quim, Lab Anal Residuos Biocidas, BR-78060900 Cuiaba, MT, Brazil
关键词
Biosensor; Atemoya; Nanoclay; Carbon nanotubes; Glyphosate; MATO-GROSSO; WATER; CHROMATOGRAPHY; PESTICIDES; GLUFOSINATE; ADSORPTION; SENSORS; SAMPLES; CLAYS;
D O I
10.1016/j.talanta.2012.06.059
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A biosensor based on atemoya peroxidase immobilised on modified nanoclay was developed for the determination of glyphosate by the enzyme inhibition method. The inhibitor effect of the biocide results in a decrease in the current response of the hydroquinone that was used as a phenolic substrate to obtain the base signal. The biosensor was constructed using graphite powder, multiwalled carbon nanotubes, peroxidase immobilised on nanoclay and mineral oil. Square-wave voltammetry was utilised for the optimisation and application of the biosensor, and several parameters were investigated to determine the optimum experimental conditions. The best performance was obtained using a 0.1 mol L-1 phosphate buffer solution (pH 7.0), 1.9 x 10(-4) mol L-1 hydrogen peroxide, a frequency of 30 Hz, a pulse amplitude of 50 mV and a scan increment of 4 mV. The glyphosate concentration response was linear between 0.10 and 4.55 mg L-1 with a detection limit of 30 mu g L-1. The average recovery of glyphosate from spiked water samples ranged from 94.9 to 108.9%. The biosensor remained stable for a period of eight weeks. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 136
页数:7
相关论文
共 32 条
[1]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[2]  
Carbo L, 2008, J BRAZIL CHEM SOC, V19, P1111, DOI 10.1590/S0103-50532008000600009
[3]   Determination of glyphosate in biological fluids by 1H and 31P NMR spectroscopy [J].
Cartigny, B ;
Azaroual, N ;
Imbenotte, M ;
Mathieu, D ;
Vermeersch, G ;
Goullé, JP ;
Lhermitte, M .
FORENSIC SCIENCE INTERNATIONAL, 2004, 143 (2-3) :141-145
[4]   A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy [J].
da Silva, Aline Santana ;
Bedatty Fernandes, Flavio Cesar ;
Tognolli, Joao Olimpio ;
Pezza, Leonardo ;
Pezza, Helena Redigolo .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2011, 79 (05) :1881-1885
[5]  
de P.R.B., 2008, QUIM NOVA, V31, P1791
[6]  
Dores EFGD, 2001, QUIM NOVA, V24, P27
[7]   Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface [J].
Du, Dan ;
Chen, Shizhen ;
Cai, Jie ;
Zhang, Aidong .
TALANTA, 2008, 74 (04) :766-772
[8]  
Fatibello O, 2007, COMP ANAL C, V49, P357, DOI 10.1016/S0166-526X(06)49017-6
[9]   Voltammetric determination of glyphosate in natural waters with a copper electrode [J].
Garcia, Andresa Fabiana ;
Rollemberg, Maria do Carmo .
QUIMICA NOVA, 2007, 30 (07) :1592-1596
[10]   Enzymes immobilized on montmorillonite K 10: Effect of adsorption and grafting on the surface properties and the enzyme activity [J].
Gopinath, Sanjay ;
Sugunan, Sankaran .
APPLIED CLAY SCIENCE, 2007, 35 (1-2) :67-75