Applications of operator semigroups to Fourier analysis

被引:3
作者
Goldstein, JA [1 ]
机构
[1] LOUISIANA STATE UNIV,DEPT MATH,BATON ROUGE,LA 70803
关键词
D O I
10.1007/BF02574079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Of concern are semigroups of linear norm one operators on Hilbert space of the form (discrete case) T={T-n\n=0,1,2,...} or (continuous case) T={T(t)\t greater than or equal to 0}. Using ergodic theory and Hilbert-Schmidt operators, the Cesaro limits (as n-->infinity) of \[T(n)f,f]\(2), \[T(n)f,f]\(2) are computed (with n is an element of Z(+) or n is an element of R(+)). Specializing the Hilbert space to be L(2)(T,mu) (discrete case) or L(2)(R,mu) (continuous case) where mu is a Borel probability measure on the circle group or the line, the Cesaro limit of \<(mu)over cap>(n)\(2) (as n-->+/-infinity, with n is an element of Z or n is an element of R) is obtained and interpreted. Extensions to T-M and R(M) are given. Finally, we discuss recent operator theoretic extensions from a Hilbert to a Banach space context.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 13 条
[1]  
BAILLON JB, IN PRESS SEMIGROUP F
[2]  
ESCOBEDO M, 1986, P ROY SOC EDINB A, V103, P257
[3]  
Goldstein J.A., 1986, ASPECTS POSITIVITY F, P49
[4]  
Goldstein J. A., 1985, SEMIGROUPS LINEAR OP
[5]   BOUND-STATES AND SCATTERED STATES FOR CONTRACTION-SEMIGROUPS [J].
GOLDSTEIN, JA .
ACTA APPLICANDAE MATHEMATICAE, 1985, 4 (01) :93-98
[6]   EXTREMAL PROPERTIES OF CONTRACTION-SEMIGROUPS ON HILBERT AND BANACH-SPACES [J].
GOLDSTEIN, JA .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 :369-376
[7]  
GOLDSTEIN JA, IN PRESS ILL J MATH
[8]  
KATO T, 1966, PERTUREBATION THEORY
[9]   THE RAGE THEOREM IN BANACH-SPACES [J].
KREULICH, J .
SEMIGROUP FORUM, 1994, 49 (02) :151-163
[10]  
LAX PD, 1967, SCATTERING THEORY