Multiplier ideal sheaves associated with weights of log canonical threshold one

被引:2
作者
Guan, Qi'an [1 ,2 ]
Li, Zhenqian [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
关键词
Plurisubharmonic function; Multiplier ideal sheaf; Lelong number; Log canonical threshold;
D O I
10.1016/j.aim.2016.07.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we will characterize the multiplier ideal sheaves associated with weights of log canonical threshold one by restricting the weights to complex regular surface. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 47
页数:8
相关论文
共 8 条
[1]  
[Anonymous], 2010, Analytic Methods in Algebraic Geometry
[2]  
[Anonymous], ARXIV151005230
[3]   Semi-continuity of complex singularity exponents and Kahler-Einstein metrics on Fano orbifolds [J].
Demailly, JP ;
Kollár, J .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (04) :525-556
[4]   Valuations and multiplier ideals [J].
Favre, C ;
Jonsson, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :655-684
[5]  
Guan Q.A., ARXIV150404209V3
[6]   Characterization of multiplier ideal sheaves with weights of Lelong number one [J].
Guan, Qi'an ;
Zhou, Xiangyu .
ADVANCES IN MATHEMATICS, 2015, 285 :1688-1705
[7]   A proof of Demailly's strong openness conjecture [J].
Guan, Qi'an ;
Zhou, Xiangyu .
ANNALS OF MATHEMATICS, 2015, 182 (02) :605-616
[8]   ON THE EXTENSION OF L2 HOLOMORPHIC-FUNCTIONS [J].
OHSAWA, T ;
TAKEGOSHI, K .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (02) :197-204