Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes

被引:669
|
作者
Neto, ADD [1 ]
Prisco, JT [1 ]
Enéas, J [1 ]
de Abreu, CEB [1 ]
Gomes, E [1 ]
机构
[1] Univ Fed Ceara, Dept Bioquim & Biol Mol, BR-60455900 Fortaleza, Ceara, Brazil
关键词
salt stress; oxidative stress; antioxidative enzymes; lipid peroxidation; maize; Zea mays;
D O I
10.1016/j.envexpbot.2005.01.008
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The effects of salt stress on the activity of antioxidative enzymes and lipid peroxidation were studied in leaves and roots of two maize genotypes, BR5033 (salt-tolerant) and BR5011 (salt-sensitive), grown under control (nutrient solution) or salt stress (nutrient solution containing 100 mM NaCl) conditions. Leaves and roots of control and salt-stressed plants were harvested at various times starting 1 day prior to initiating the salt treatment. In leaves of salt-stressed plants, superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol, peroxidase (GPX) and glutathione reductase (GR) activities increased with time when compared to the controls. The increase in enzyme activities was more pronounced in the salt-tolerant than in the salt-sensitive genotype. Salt stress had no significant effect on catalase (CAT) activity in the salt-tolerant, but it was reduced significantly in the salt-sensitive genotype. In salt-stressed roots of the salt-tolerant genotype, SOD and CAT activities decreased and APX, GPX and GR activities remained unchanged in comparison with the control. In roots of the salt-sensitive genotype, salinity reduced the activity of all studied enzymes. The data show that CAT and GPX enzymes had the greatest H2O2 scavenger activity in both leaves and roots. Moreover, CAT, APX and GPX activities in conjunction with SOD seem to play an essential protective role in the scavenging processes. Lipid peroxidation was enhanced only in salt-stressed leaves of the salt-sensitive genotype. These results indicate that oxidative stress may play an important role in salt-stressed maize plants and that the greater protection of BR5033 leaves and roots from salt-induced oxidative damage results, at least in part, through the maintenance and/or increase of the activity of antioxidant enzymes. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 50 条
  • [21] Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress
    Xin Fang
    Junjie Mo
    Hongkai Zhou
    Xuefeng Shen
    Yuling Xie
    Jianghuan Xu
    Shan Yang
    Scientific Reports, 13
  • [22] Growth and physiological response of salt-sensitive and salt-tolerant rootstocks of citrus to paclobutrazol under salt stress
    Dubey, A. K.
    Srivastav, Manish
    Singh, A. K.
    Pandey, R. N.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2009, 79 (08): : 595 - 599
  • [23] RESPONSES OF SALT-TOLERANT AND SALT-SENSITIVE LINES OF SAFFLOWER (CARTHAMUS-TINCTORIUS L) TO SALT STRESS
    ASHRAF, M
    FATIMA, H
    ACTA PHYSIOLOGIAE PLANTARUM, 1995, 17 (01) : 61 - 70
  • [24] DISTRIBUTION OF CATIONS IN LEAVES OF SALT-TOLERANT AND SALT-SENSITIVE LINES OF SUNFLOWER UNDER SALINE CONDITIONS
    ASHRAF, M
    OLEARY, JW
    JOURNAL OF PLANT NUTRITION, 1995, 18 (11) : 2379 - 2388
  • [25] Anti-oxidative responses of salt-tolerant and salt-sensitive pepper (Capsicum annuum L.) genotypes grown under salt stress
    Aktas, H.
    Abak, K.
    Eker, S.
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2012, 87 (04): : 360 - 366
  • [26] Nitrogen transporters expression in salt-tolerant and salt-sensitive tomato plants
    Abouelsaad, I.
    Weihrauch, D.
    Renault, S.
    BOTANY-BOTANIQUE, 2014, 92 (09): : 637 - 637
  • [27] UPTAKE AND TRANSLOCATION OF SODIUM IN SALT-SENSITIVE AND SALT-TOLERANT PLANTAGO SPECIES
    TANCZOS, OG
    ERDEI, L
    SNIJDER, J
    PLANT AND SOIL, 1981, 63 (01) : 27 - 32
  • [28] The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars
    Walitang, Denver I.
    Kim, Chang-Gi
    Kim, Kiyoon
    Kang, Yeongyeong
    Kim, Young Kee
    Sa, Tongmin
    BMC PLANT BIOLOGY, 2018, 18
  • [29] Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea
    Prerostova, Sylva
    Dobrev, Petre I.
    Gaudinova, Alena
    Hosek, Petr
    Soudek, Petr
    Knirsch, Vojtech
    Vankova, Radomira
    PLANT SCIENCE, 2017, 264 : 188 - 198
  • [30] The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars
    Denver I. Walitang
    Chang-Gi Kim
    Kiyoon Kim
    Yeongyeong Kang
    Young Kee Kim
    Tongmin Sa
    BMC Plant Biology, 18