Selective Formation of Zigzag Edges in Graphene Cracks

被引:22
作者
Fujihara, Miho [1 ,2 ]
Inoue, Ryosuke [3 ]
Kurita, Rei [3 ]
Taniuchi, Toshiyuki [4 ]
Motoyui, Yoshihito [4 ]
Shin, Shik [4 ]
Komori, Fumio [4 ]
Maniwa, Yutaka [3 ]
Shinohara, Hisanori [1 ,2 ]
Miyata, Yasumitsu [3 ,5 ]
机构
[1] Nagoya Univ, Dept Chem, Nagoya, Aichi 4648602, Japan
[2] Inst Adv Res, Nagoya, Aichi 4648602, Japan
[3] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan
[4] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[5] JST PRESTO, Kawaguchi, Saitama 3320012, Japan
基金
日本学术振兴会;
关键词
graphene; cracking; cleavage; zigzag edge; nanogaps; CHEMICAL-VAPOR-DEPOSITION; THERMAL-EXPANSION; GRAIN-BOUNDARIES; NANORIBBONS; GROWTH; SPECTROSCOPY; DOMAINS; FILMS;
D O I
10.1021/acsnano.5b03079
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the thermally induced unconventional cracking of graphene to generate zigzag edges. This crystallography-selective cracking was observed for as-grown graphene films immediately following the cooling process subsequent to chemical vapor deposition (CVD) on Cu foil. Results from Raman spectroscopy show that the crack-derived edges have smoother zigzag edges than the chemically formed grain edges of CVD graphene. Using these cracks as nanogaps, we were also able to demonstrate the carrier tuning of graphene through the electric field effect. Statistical analysis of visual observations indicated that the crack formation results from uniaxial tension imparted by the Cu substrates together with the stress concentration at notches in the polycrystalline graphene films. On the basis of simulation results using a simplified thermal shrinkage model, we propose that the cooling-induced tension is derived from the transient lattice expansion of narrow Cu grains imparted by the thermal shrinkage of adjacent Cu grains.
引用
收藏
页码:9027 / 9033
页数:7
相关论文
共 41 条
[1]   Thermomechanical behavior of different texture components in Cu thin films [J].
Baker, SP ;
Kretschmann, A ;
Arzt, E .
ACTA MATERIALIA, 2001, 49 (12) :2145-2160
[2]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[3]   Influence of the atomic structure on the Raman spectra of graphite edges -: art. no. 247401 [J].
Cançado, LG ;
Pimenta, MA ;
Neves, BRA ;
Dantas, MSS ;
Jorio, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (24)
[4]   Controlled Nanocutting of Graphene [J].
Ci, Lijie ;
Xu, Zhiping ;
Wang, Lili ;
Gao, Wei ;
Ding, Feng ;
Kelly, Kevin F. ;
Yakobson, Boris I. ;
Ajayan, Pulickel M. .
NANO RESEARCH, 2008, 1 (02) :116-122
[5]   Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM [J].
Cong, Chunxiao ;
Li, Kun ;
Zhang, Xi Xiang ;
Yu, Ting .
SCIENTIFIC REPORTS, 2013, 3
[6]   Crystallographic etching of few-layer graphene [J].
Datta, Sujit S. ;
Strachan, Douglas R. ;
Khamis, Samuel M. ;
Johnson, A. T. Charlie .
NANO LETTERS, 2008, 8 (07) :1912-1915
[7]   Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001) [J].
Ferralis, Nicola ;
Maboudian, Roya ;
Carraro, Carlo .
PHYSICAL REVIEW LETTERS, 2008, 101 (15)
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Graphene at the Edge: Stability and Dynamics [J].
Girit, Caglar Oe ;
Meyer, Jannik C. ;
Erni, Rolf ;
Rossell, Marta D. ;
Kisielowski, C. ;
Yang, Li ;
Park, Cheol-Hwan ;
Crommie, M. F. ;
Cohen, Marvin L. ;
Louie, Steven G. ;
Zettl, A. .
SCIENCE, 2009, 323 (5922) :1705-1708
[10]   Continuous Growth of Hexagonal Graphene and Boron Nitride In-Plane Heterostructures by Atmospheric Pressure Chemical Vapor Deposition [J].
Han, Gang Hee ;
Rodriguez-Manzo, Julio A. ;
Lee, Chan-Woo ;
Kybert, Nicholas J. ;
Lerner, Mitchell B. ;
Qi, Zhengqing John ;
Dattoli, Eric N. ;
Rappe, Andrew M. ;
Drndic, Marija ;
Johnson, A. T. Charlie .
ACS NANO, 2013, 7 (11) :10129-10138