In an exterior domain Omega subset of R-3 and a time interval [0, T), 0 < T <= infinity, consider the instationary Navier-Stokes equations with initial value u(0) epsilon L-sigma(2)(Omega) and external force f = div F, F epsilon L-2(0, T; L-2(Omega)). As is well-known there exists at least one weak solution in the sense of J. Leray and E. Hopf with vanishing boundary values satisfying the strong energy inequality. In this paper, we extend the class of global in time Leray Hopf weak solutions to the case when (u)vertical bar(partial derivative Omega) = g with non-zero time-dependent boundary values g. Although uniqueness for these solutions cannot be proved, we show the existence of at least one weak solution satisfying the strong energy inequality and a related energy estimate. (C) 2014 Elsevier Inc. All rights reserved.
机构:
Univ Texas Austin, Dept Math, Austin, TX 78712 USAUniv Fed Rio de Janeiro, Inst Matemat, Dept Matemat Aplicada, BR-21941909 Rio De Janeiro, Brazil
Bjorland, Clayton
Niche, Cesar J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Dept Matemat Aplicada, BR-21941909 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Matemat, Dept Matemat Aplicada, BR-21941909 Rio De Janeiro, Brazil
机构:
North China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450045, Henan Province, Peoples R ChinaNorth China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450045, Henan Province, Peoples R China
Yang, Jianwei
Ju, Qiangchang
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Beijing 100088, Peoples R ChinaNorth China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450045, Henan Province, Peoples R China