Effective Density and Mass-Mobility Exponent of Aircraft Turbine Particulate Matter

被引:34
|
作者
Johnson, Tyler J. [1 ]
Olfert, Jason S. [2 ]
Symonds, Jonathan P. R. [3 ]
Johnson, Mark [4 ]
Rindlisbacher, Theo [5 ]
Swanson, Jacob J. [6 ]
Boies, Adam M. [7 ]
Thomson, Kevin [8 ]
Smallwood, Greg [8 ]
Walters, David [9 ]
Sevcenco, Yura [9 ]
Crayford, Andrew [9 ]
Dastanpour, Ramin [10 ]
Rogak, Steven N. [10 ]
Durdina, Lukas [11 ]
Bahk, Yeon Kyoung [11 ]
Brem, Benjamin [11 ]
Wang, Jing [12 ]
机构
[1] Univ Alberta, Dept Mech Engn 2 11, Edmonton, AB T6G 2G8, Canada
[2] Univ Alberta, Dept Mech Engn 5 01C, Edmonton, AB T6G 2G8, Canada
[3] Cambustion Ltd, Cambridge CB1 8DH, England
[4] Rolls Royce Plc, Test & Measurement, Derby DE24 8BJ, England
[5] Swiss Fed Off Civil Aviat, Environm Sect, CH-3003 Bern, Switzerland
[6] Mankato State Univ, Dept Integrated Engn, Mankato, MN 56001 USA
[7] Univ Cambridge, Dept Engn, Div Energy, Cambridge CB2 1PZ, England
[8] Natl Res Council Canada, Measurement Sci & Stand, Ottawa, ON K1A 0R6, Canada
[9] Cardiff Univ, Sch Engn, GTRC, Cardiff CF24 3AA, S Glam, Wales
[10] Univ British Columbia, Dept Mech Engn, Vancouver, BC V6T 1Z4, Canada
[11] Swiss Fed Labs Mat Sci & Technol, EMPA, CH-8600 Dubendorf, Switzerland
[12] ETH, Inst Environm Engn, CH-8093 Zurich, Switzerland
关键词
PARTICLE MASS; AIRBORNE OBSERVATIONS; COMMERCIAL AIRCRAFT; SOOT PARTICLES; REAL-TIME; EMISSIONS; AEROSOL; ENGINE; MORPHOLOGY; SIZE;
D O I
10.2514/1.B35367
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A centrifugal particle mass analyzer and a modified differential mobility spectrometer were used to measure the mass and mobility of particulate matter emitted by CFM56-5B4/2P, CFM56-7B26/3, and PW4000-100 gas turbine engine sources. The mass-mobility exponent of the particulate matter from the CFM56-5B4/2P engine ranged from 2.68 to 2.82, whereas the effective particle densities varied from 600 to 1250 kg/m(3), depending on the static engine thrust and sampling methodology used. The effective particle densities from the CFM56-7B26/3 and PW4000-100 engines also fell within this range. The sample was conditioned with or without a catalytic stripper and with or without dilution, which caused the effective density to change, indicating the presence of condensed semivolatile material on the particles. Variability of the determined effective densities across different engine thrusts, based on the scattering about the line of best fit, was lowest for the diluted samples and highest for the undiluted sample without a catalytic stripper. This variability indicates that the relative amount of semivolatile material produced was engine thrust dependent. It was found that the nonvolatile particulate matter, effective particle density (in kilograms per cubic meter) of the CFM56-5B4/2P engine at relative thrusts below 30% could be approximated using the particle mobility diameter (d(me) in meters) with 11.92d(me)((2.76-3)).
引用
收藏
页码:573 / 582
页数:10
相关论文
共 33 条
  • [1] Effective density and mass-mobility exponents of particulate matter in aircraft turbine exhaust: Dependence on engine thrust and particle size
    Abegglen, M.
    Durdina, L.
    Brem, B. T.
    Wang, J.
    Rindlisbacher, T.
    Corbin, J. C.
    Lohmann, U.
    Sierau, B.
    JOURNAL OF AEROSOL SCIENCE, 2015, 88 : 135 - 147
  • [2] Determination of particle mass, effective density, mass-mobility exponent, and dynamic shape factor using an aerodynamic aerosol classifier and a differential mobility analyzer in tandem
    Tavakoli, Farzan
    Olfert, Jason S.
    Journal of Aerosol Science, 2014, 75 : 35 - 42
  • [3] Determination of particle mass, effective density, mass-mobility exponent, and dynamic shape factor using an aerodynamic aerosol classifier and a differential mobility analyzer in tandem
    Tavakoli, Farzan
    Olfert, Jason S.
    JOURNAL OF AEROSOL SCIENCE, 2014, 75 : 35 - 42
  • [4] Determination of PM mass emissions from an aircraft turbine engine using particle effective density
    Durdina, L.
    Brem, B. T.
    Abegglen, M.
    Lobo, P.
    Rindlisbacher, T.
    Thomson, K. A.
    Smallwood, G. J.
    Hagen, D. E.
    Sierau, B.
    Wang, J.
    ATMOSPHERIC ENVIRONMENT, 2014, 99 : 500 - 507
  • [5] Electron Microscopic Study of Soot Particulate Matter Emissions from Aircraft Turbine Engines
    Liati, Anthi
    Brem, Benjamin T.
    Durdina, Lukas
    Voegtli, Melanie
    Dasilva, Yadira Arroyo Rojas
    Eggenschwiler, Panayotis Dimopoulos
    Wang, Jing
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (18) : 10975 - 10983
  • [6] A review on the morphological properties of non-volatile particulate matter emissions from aircraft turbine engines
    Saffaripour, Meghdad
    Thomson, Kevin A.
    Smallwood, Gregory J.
    Lobo, Prem
    Journal of Aerosol Science, 2020, 139
  • [7] Experimental verification of principal losses in a regulatory particulate matter emissions sampling system for aircraft turbine engines
    Kittelson, D. B.
    Swanson, J.
    Aldridge, M.
    Giannelli, R. A.
    Kinsey, J. S.
    Stevens, J. A.
    Liscinsky, D. S.
    Hagen, D.
    Leggett, C.
    Stephens, K.
    Hoffman, B.
    Howard, R.
    Frazee, R. W.
    Silvis, W.
    McArthur, T.
    Lobo, P.
    Achterberg, S.
    Trueblood, M.
    Thomson, K.
    Wolff, L.
    Cerully, K.
    Onasch, T.
    Miake-Lye, R.
    Freedman, A.
    Bachalo, W.
    Payne, G.
    AEROSOL SCIENCE AND TECHNOLOGY, 2021, 56 (01) : 63 - 74
  • [8] A review on the morphological properties of non-volatile particulate matter emissions from aircraft turbine engines
    Saffaripour, Meghdad
    Thomson, Kevin A.
    Smallwood, Gregory J.
    Lobo, Prem
    JOURNAL OF AEROSOL SCIENCE, 2020, 139
  • [10] Raman spectroscopy and TEM characterization of solid particulate matter emitted from soot generators and aircraft turbine engines
    Saffaripour, Meghdad
    Tay, Li-Lin
    Thomson, Kevin A.
    Smallwood, Gregory J.
    Brem, Benjamin T.
    Durdina, Lukas
    Johnson, Mark
    AEROSOL SCIENCE AND TECHNOLOGY, 2017, 51 (04) : 518 - 531