Regularized least squares fuzzy support vector regression for financial time series forecasting

被引:84
|
作者
Khemchandani, Reshma [1 ]
Jayadeva [2 ]
Chandra, Suresh [1 ]
机构
[1] Indian Inst Technol, Dept Math, New Delhi 110016, India
[2] Inst Area Vasant Kunj, IBM India Res Lab, New Delhi 110070, India
关键词
Machine learning; Support vector machines; Regression; Financial time series forecasting; Fuzzy membership; MACHINES;
D O I
10.1016/j.eswa.2007.09.035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel approach, termed as regularized least squares fuzzy support vector regression, to handle financial time series forecasting. Two key problems in. financial time series forecasting are noise and non-stationarity. Here, we assign a higher membership value to data samples that contain more relevant information, where relevance is related to recency in time. The approach requires only a single matrix inversion. For the linear case, the matrix order depends only on the dimension in which the data samples lie, and is independent of the number of samples. The efficacy of the proposed algorithm is demonstrated on. financial datasets available in the public domain. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:132 / 138
页数:7
相关论文
共 50 条
  • [41] Regularized robust fuzzy least squares twin support vector machine for class imbalance learning
    Ganaie, M. A.
    Tanveer, M.
    Suganthan, P. N.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [42] Financial time series forecasting using support vector machines
    Kim, KJ
    NEUROCOMPUTING, 2003, 55 (1-2) : 307 - 319
  • [43] Modified support vector machines in financial time series forecasting
    Tay, FEH
    Cao, LJ
    NEUROCOMPUTING, 2002, 48 : 847 - 861
  • [44] ε-Descending Support Vector Machines for Financial Time Series Forecasting
    Francis E. H. Tay
    L. J. Cao
    Neural Processing Letters, 2002, 15 : 179 - 195
  • [45] Support Vector Machines through Financial Time Series Forecasting
    Kewat, Pooja
    Sharma, Roopesh
    Singh, Upendra
    Itare, Ravikant
    2017 INTERNATIONAL CONFERENCE OF ELECTRONICS, COMMUNICATION AND AEROSPACE TECHNOLOGY (ICECA), VOL 2, 2017, : 471 - 477
  • [46] Financial Time Series Forecasting Using Support Vector Machine
    Gui, Bin
    Wei, Xianghe
    Shen, Qiong
    Qi, Jingshan
    Guo, Liqiang
    2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 39 - 43
  • [47] Application of support vector machines in financial time series forecasting
    Tay, FEH
    Cao, LJ
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2001, 29 (04): : 309 - 317
  • [48] ε-descending support vector machines for financial time series forecasting
    Tay, FEH
    Cao, LJ
    NEURAL PROCESSING LETTERS, 2002, 15 (02) : 179 - 195
  • [49] Building support vector machines in the context of regularized least squares
    Peng, Jian-Xun
    Rafferty, Karen
    Ferguson, Stuart
    NEUROCOMPUTING, 2016, 211 : 129 - 142
  • [50] Time series forecasting by a seasonal support vector regression model
    Pai, Ping-Feng
    Lin, Kuo-Ping
    Lin, Chi-Shen
    Chang, Ping-Teng
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (06) : 4261 - 4265