Determination of Critical Thickness for Epitaxial ZnTe Layers Grown by Molecular Beam Epitaxy on (211)B and (100) GaSb Substrates

被引:8
|
作者
Chai, J. [1 ]
Noriega, O. C. [2 ]
Dedigama, A. [1 ]
Kim, J. J. [3 ]
Savage, A. A. [1 ]
Doyle, K. [1 ]
Smith, C. [1 ]
Chau, N. [1 ]
Pena, J. [1 ]
Dinan, J. H. [1 ]
Smith, D. J. [3 ]
Myers, T. H. [1 ]
机构
[1] Texas State Univ San Marcos, Mat Sci Engn & Commercializat Program, San Marcos, TX 78666 USA
[2] Texas State Univ San Marcos, Dept Phys, San Marcos, TX 78666 USA
[3] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
关键词
ZnTe; GaSb; critical thickness; x-ray diffraction; transmission electron microscopy; confocal photoluminescence; X-RAY-DIFFRACTION; DISLOCATION MULTIPLICATION; MICROSCOPY; SEMICONDUCTORS; RELAXATION; DEFECTS;
D O I
10.1007/s11664-013-2650-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cross-section electron micrographs, cathodoluminescence images, and confocal photoluminescence (cPL) images have been acquired for ZnTe layers deposited to various thicknesses on GaSb substrates with (211)B and (100) orientations. The critical thickness of ZnTe on GaSb is predicted to range between 115 nm and 329 nm, depending on the theoretical approach chosen. For ZnTe layers grown on (211)B GaSb with thickness exceeding 150 nm, dark spots and lines are present in all images. We associate these with dislocations generated at the ZnTe/GaSb interface. The discrepancy between this thickness value and a critical thickness value (350 nm to 375 nm) obtained for the (211)B orientation in a previous study is related to the distinction between the onset of misfit dislocations and the onset of significant plastic deformation. The former requires a direct imaging technique, as strain-related measurements such as x-ray diffraction do not have the resolution to detect the effects of small numbers of dislocations. For ZnTe layers on (100) GaSb, x-ray diffraction measurements indicate an abrupt change characteristic of dislocation multiplication at a thickness value in the range from 250 nm to 275 nm. High-resolution electron micrographs of the ZnTe/GaSb interface indicate that deoxidation using atomic hydrogen produces GaSb surfaces suitable for ZnTe epitaxy. cPL images of a 1.2-mu m-thick lattice-matched ZnTe0.99Se (0.01) layer grown on a 150-nm-thick ZnTe buffer layer on a (211)B GaSb substrate yield a threading dislocation density of similar to 7 x 10(4) cm(-2).
引用
收藏
页码:3090 / 3096
页数:7
相关论文
共 50 条
  • [1] Determination of Critical Thickness for Epitaxial ZnTe Layers Grown by Molecular Beam Epitaxy on (211)B and (100) GaSb Substrates
    J. Chai
    O. C. Noriega
    A. Dedigama
    J. J. Kim
    A. A. Savage
    K. Doyle
    C. Smith
    N. Chau
    J. Pena
    J. H. Dinan
    D. J. Smith
    T. H. Myers
    Journal of Electronic Materials, 2013, 42 : 3090 - 3096
  • [2] Critical Thickness of ZnTe on GaSb(211)B
    Chai, J.
    Noriega, O. C.
    Dinan, J. H.
    Myers, T. H.
    JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (11) : 3001 - 3006
  • [3] Critical Thickness of ZnTe on GaSb(211)B
    J. Chai
    O. C. Noriega
    J. H. Dinan
    T. H. Myers
    Journal of Electronic Materials, 2012, 41 : 3001 - 3006
  • [4] Microstructure of Heteroepitaxial ZnTe Grown by Molecular Beam Epitaxy on Si(211) Substrates
    Wang, X. J.
    Chang, Y.
    Becker, C. R.
    Grein, C. H.
    Sivananthan, S.
    Kodama, R.
    JOURNAL OF ELECTRONIC MATERIALS, 2011, 40 (08) : 1860 - 1866
  • [5] Microstructure of Heteroepitaxial ZnTe Grown by Molecular Beam Epitaxy on Si(211) Substrates
    X. J. Wang
    Y. Chang
    C. R. Becker
    C. H. Grein
    S. Sivananthan
    R. Kodama
    Journal of Electronic Materials, 2011, 40 : 1860 - 1866
  • [6] Molecular beam epitaxy of GaSb layers on GaAs (001) substrates by using three-step ZnTe buffer layers
    Lee, Woong
    Kim, Siyoung
    Choi, Sunggook
    Lee, Hongchan
    Lee, Sangtae
    Park, Seunghwan
    Yao, Takafumi
    Song, Joonsuk
    Ko, Hangju
    Chang, Jiho
    JOURNAL OF CRYSTAL GROWTH, 2007, 305 (01) : 40 - 44
  • [7] GaSb/ZnTe double-heterostructures grown using molecular beam epitaxy
    Fan, J.
    Ouyang, L.
    Liu, X.
    Furdyna, J. K.
    Smith, D. J.
    Zhang, Y. -H.
    JOURNAL OF CRYSTAL GROWTH, 2013, 371 : 122 - 125
  • [8] Microstructure of Heteroepitaxial ZnTe Grown on GaAs(211)B by Molecular Beam Epitaxy
    Wang, X. J.
    Hou, Y. B.
    Chang, Y.
    Becker, C. R.
    Klie, R. F.
    Sivananthan, S.
    JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (08) : 1776 - 1780
  • [9] Microstructure of Heteroepitaxial ZnTe Grown on GaAs(211)B by Molecular Beam Epitaxy
    X. J. Wang
    Y. B. Hou
    Y. Chang
    C. R. Becker
    R. F. Klie
    S. Sivananthan
    Journal of Electronic Materials, 2009, 38 : 1776 - 1780
  • [10] Microstructural Characterization of CdTe(211)B/ZnTe/Si(211) Heterostructures Grown by Molecular Beam Epitaxy
    Zhao, F.
    Jacobs, R. N.
    Jaime-Vasquez, M.
    Bubulac, L. O.
    Smith, David J.
    JOURNAL OF ELECTRONIC MATERIALS, 2011, 40 (08) : 1733 - 1737