Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex

被引:29
|
作者
Lin, Tzu-Yu [1 ,3 ]
Lin, Yu-Wan [2 ]
Lu, Cheng-Wei [1 ,3 ]
Huang, Shu-Kuei [1 ]
Wang, Su-Jane [2 ]
机构
[1] Far Eastern Mem Hosp, Dept Anesthesiol, New Taipei, Taiwan
[2] Fu Jen Catholic Univ, Grad Inst Basic Med, New Taipei, Taiwan
[3] Yuan Ze Univ, Dept Mech Engn, New Taipei, Taiwan
来源
PLOS ONE | 2013年 / 8卷 / 06期
关键词
SYNAPSIN-I PHOSPHORYLATION; PROTEIN-KINASE-C; CALCIUM-CHANNELS; NEUROTRANSMITTER RELEASE; PRESYNAPTIC MODULATION; ALZHEIMERS-DISEASE; NEURONAL DAMAGE; MAP KINASE; SYNAPTOSOMES; HIPPOCAMPUS;
D O I
10.1371/journal.pone.0067215
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by the chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca2+ concentration. Involvement of the Cav2.1 (P/Q-type) channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type) channel blocker v-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK) inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK/synapsin I signaling cascade. This finding may provide further understanding of the mode of berberine action in the brain and highlights the therapeutic potential of this compound in the treatment of a wide range of neurological disorders.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Quercetin inhibits depolarization-evoked glutamate release in nerve terminals from rat cerebral cortex
    Lu, Cheng-Wei
    Lin, Tzu-Yu
    Wang, Su-Jane
    NEUROTOXICOLOGY, 2013, 39 : 1 - 9
  • [2] Fangchinoline inhibits glutamate release from rat cerebral cortex nerve terminals (synaptosomes)
    Lin, Tzu-Yu
    Lu, Cheng-Wei
    Tien, Lu-Tai
    Chuang, Shu-Han
    Wang, Yu-Ru
    Chang, Wen-Hsuan
    Wang, Su-Jane
    NEUROCHEMISTRY INTERNATIONAL, 2009, 54 (08) : 506 - 512
  • [3] Inhibition of glutamate release by bupropion in rat cerebral cortex nerve terminals
    Lin, Tzu Yu
    Yang, Tsung-Tair
    Lu, Cheng Wei
    Wang, Su-Jane
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2011, 35 (02): : 598 - 606
  • [4] Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals
    Lin, Tzu-Yu
    Lu, Cheng-Wei
    Wang, Chia-Chuan
    Lu, Jyh-Feng
    Wang, Su-Jane
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2012, 263 (02) : 233 - 243
  • [5] Luteolin Inhibits the Release of Glutamate in Rat Cerebrocortical Nerve Terminals
    Lin, Tzu Yu
    Lu, Cheng Wei
    Chang, Chia Chien
    Huang, Shu Kuei
    Wang, Su Jane
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2011, 59 (15) : 8458 - 8466
  • [6] Pyridoxine Inhibits Depolarization-Evoked Glutamate Release in Nerve Terminals from Rat Cerebral Cortex: a Possible Neuroprotective Mechanism?
    Yang, Tsung-Tair
    Wang, Su-Jane
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2009, 331 (01): : 244 - 254
  • [7] Palmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals
    Lin, Tzu-Yu
    Lu, Cheng-Wei
    Wu, Chia-Chan
    Huang, Shu-Kuei
    Wang, Su-Jane
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (03): : 5555 - 5571
  • [8] Cycloheterophyllin Inhibits the Release of Glutamate from Nerve Terminals of the Rat Hippocampus
    Su, I. Chang
    Hung, Chi Feng
    Lin, Chun Nan
    Huang, Shu Kuei
    Wang, Su Jane
    CHEMICAL RESEARCH IN TOXICOLOGY, 2019, 32 (08) : 1591 - 1598
  • [9] Myricetin Inhibits the Release of Glutamate in Rat Cerebrocortical Nerve Terminals
    Chang, Yi
    Chang, Chia-Ying
    Wang, Su-Jane
    Huang, Shu-Kuei
    JOURNAL OF MEDICINAL FOOD, 2015, 18 (05) : 516 - 523
  • [10] Dimebon, an antihistamine drug, inhibits glutamate release in rat cerebrocortical nerve terminals
    Wang, Che-Chuan
    Kuo, Jinn-Rung
    Wang, Su-Jane
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2014, 734 : 67 - 76