Strain Capacity of Strain-Hardening Ultra-High-Performance Concrete with Steel Fibers

被引:10
作者
Naaman, Antoine E. [1 ]
Shah, Surendra P. [2 ,3 ]
机构
[1] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA
[2] Univ Texas Arlington, Arlington, TX 76019 USA
[3] Northwestern Univ, Civil & Environm Engn, Evanston, IL 60208 USA
关键词
slurry-infiltrated fiber concrete (SIFCON); slurry-infiltrated mat concrete (SIMCON); steel fiber; strain capacity in tension; strain-hardening; tensile strength; ultra-high-performance concrete (UHPC); ultra-high-performance fiber-reinforced concrete (UHP-FRC); UHP-FRC; TENSILE BEHAVIOR;
D O I
10.14359/51734357
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The maximum post-cracking tensile strength (sigma(pc)) recorded in numerous investigations of ultra-high-performance fiber-reinforced concrete (UHP-FRC) remains mostly below 15 MPa, and the corresponding strain (epsilon(pc)) below 4/1000. Both values are significantly reduced when the specimen size increases, as is needed for real structural applications. Test data on spc and epc from close to 100 series of direct tensile tests carried out in more than 20 investigations are analyzed. Factors influencing the strain capacity are identified. However, independently of the numerous parameters encountered, two observations emerged beyond all others: 1) the higher the post-cracking tensile strength (whichever way it is achieved), the higher the corresponding tensile strain; and 2) fibers mechanically deformed and/or with slip-hardening bond characteristics lead to an increase in strain capacity. A rational explanation for these observations is provided. The authors believe that achieving a large strain (epsilon(pc)) at maximum stress is paramount for the successful applications of ultra-high-performance concrete in concrete structures not only for strength but, more critically, for ductility and energy absorption capacity improvements.
引用
收藏
页码:171 / 180
页数:10
相关论文
共 50 条
  • [1] Strain-hardening Ultra-High-Performance Geopolymer Concrete (UHPGC): Matrix design and effect of steel fibers
    Lao, Jian-Cong
    Xu, Ling-Yu
    Huang, Bo-Tao
    Dai, Jian-Guo
    Shah, Surendra P.
    COMPOSITES COMMUNICATIONS, 2022, 30
  • [2] Strain-hardening effect on the flexural behavior of ultra-high-performance fiber-reinforced concrete beams with steel rebars
    Yoo, Doo-Yeol
    Soleimani-Dashtaki, Salman
    Oh, Taekgeun
    Chun, Booki
    Banthia, Nemkumar
    Lee, Seung-Jung
    Yoon, Young -Soo
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2024, 17
  • [3] Utilization of sodium carbonate activator in strain-hardening ultra-high-performance geopolymer concrete (SH-UHPGC)
    Lao, Jian-Cong
    Xu, Ling-Yu
    Huang, Bo-Tao
    Zhu, Ji-Xiang
    Khan, Mehran
    Dai, Jian-Guo
    FRONTIERS IN MATERIALS, 2023, 10
  • [4] Calculation method for flexural capacity of high strain-hardening ultra-high performance concrete T-beams
    Liu, Chao
    Zhang, Yuxin
    Yao, Yuan
    Huang, Yuhao
    STRUCTURAL CONCRETE, 2019, 20 (01) : 405 - 419
  • [5] Strain-hardening Ultra-high Performance Fibre Reinforced Concrete: Deformability versus Strength Optimization
    Denarie, E.
    Bruehwiler, E.
    BASIC RESEARCH ON CONCRETE AND APPLICATIONS, 2011, : 255 - 276
  • [6] Strain-Hardening Mechanism of Ultra-High Performance Concrete Based on Polyethylene Fiber Surface Modification
    Zhang G.
    Peng G.
    Lei Z.
    Niu X.
    Ding H.
    Jiang Y.
    Fan Y.
    Peng, Gaifei (gfpeng@bjtu.edu.cn), 1600, Chinese Ceramic Society (49): : 2346 - 2354
  • [7] Effect of Steel Fibers on Tensile Properties of Ultra-High-Performance Concrete: A Review
    Du, Wanghui
    Yu, Feng
    Qiu, Liangsheng
    Guo, Yixuan
    Wang, Jialiang
    Han, Baoguo
    MATERIALS, 2024, 17 (05)
  • [8] Mechanical Properties of Ultra-High-Performance Concrete with Steel and PVA Fibers
    Jacintho, Ana Elisabete P. G. A.
    Santos, Andre M. dos
    Santos Junior, Gilvan B.
    Krahl, Pablo A.
    Barbante, Grazielle G.
    Pimentel, Lia L.
    Forti, Nadia C. S.
    MATERIALS, 2024, 17 (23)
  • [9] Structural performance of ultra-high-performance concrete beams with different steel fibers
    Yoo, Doo-Yeol
    Yoon, Young-Soo
    ENGINEERING STRUCTURES, 2015, 102 : 409 - 423
  • [10] Recent Advances in Strain-Hardening UHPC with Synthetic Fibers
    Dai, Jian-Guo
    Huang, Bo-Tao
    Shah, Surendra P.
    JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (10):