Analytic Properties of Markov Semigroup Generated by Stochastic Differential Equations Driven by L,vy Processes

被引:1
|
作者
Fernando, Pani W. [1 ]
Hausenblas, Erika [1 ]
Razafimandimby, Paul [1 ]
机构
[1] Univ Leoben, Lehrstuhl Angew Math, Franz Josef Str E 18, A-8700 Leoben, Austria
基金
奥地利科学基金会;
关键词
Hoh's symbol; Markovian semigroup; Pseudo-differential operator L'evy process; Generalized Blumenthal-Getoor index; Sobolev-Slobodeckii spaces;
D O I
10.1007/s11118-016-9570-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the stochastic differential equation (SDE) of the form where is globally Lipschitz continuous and L={L(t):ta0} is a L,vy process. Under this condition on sigma it is well known that the above problem has a unique solution X. Let be the Markovian semigroup associated to X defined by , ta0, , . Let B be a pseudo-differential operator characterized by its symbol q. Fix . In this article we investigate under which conditions on sigma, L and q there exist two constants gamma > 0 and C > 0 such that vertical bar BPtu vertical bar H-2(rho) <= C t(-gamma) vertical bar u vertical bar H-2(rho), (sic)u is an element of H-2(rho) (R-d), t > 0.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条