On Derivative Criteria for Metric Regularity

被引:3
作者
Dontchev, Asen L. [1 ]
Frankowska, Helene [2 ]
机构
[1] Math Reviews, 416 Fourth St, Ann Arbor, MI 48107 USA
[2] Univ Paris 06, Inst Math Jussieu, CNRS, F-75252 Paris, France
来源
COMPUTATIONAL AND ANALYTICAL MATHEMATICS: IN HONOR OF JONATHAN BORWEIN'S 60TH BIRTHDAY | 2013年 / 50卷
关键词
Set-valued mapping; Metric regularity; Strong metric regularity; Graphical derivative; Coderivative Paratingent derivative;
D O I
10.1007/978-1-4614-7621-4_16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple self-contained proof of the equality which links directly the graphical derivative and coderivative criteria for metric regularity. Then we present a sharper form of the criterion for strong metric regularity involving the paratingent derivative.
引用
收藏
页码:365 / 374
页数:10
相关论文
共 9 条
[1]  
[Anonymous], 1998, Variational Analysis
[2]  
[Anonymous], 2002, NONCON OPTIM ITS APP
[3]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[4]   A viability approach to the inverse set-valued map theorem [J].
Aubin, Jean-Pierre .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (03) :419-432
[5]  
AUBIN JP, 1995, J CONVEX ANAL, V2, P19
[6]  
Dal Maso G, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P335
[7]  
Dontchev AL, 2006, J CONVEX ANAL, V13, P281
[8]  
Dontchev AL, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-87821-8_1
[9]   Holder metric regularity of set-valued maps [J].
Frankowska, Helene ;
Quincampoix, Marc .
MATHEMATICAL PROGRAMMING, 2012, 132 (1-2) :333-354