Regularity of the solution for a final value problem for the Rayleigh-Stokes equation

被引:23
作者
Hoang Luc Nguyen [1 ,2 ]
Huy Tuan Nguyen [3 ]
Zhou, Yong [4 ,5 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
[2] VNUHCM Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City 700000, Vietnam
[4] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan, Hunan, Peoples R China
[5] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, Jeddah, Saudi Arabia
关键词
final value problem; fractional Rayleigh-Stokes equation; regularity; SUBJECT;
D O I
10.1002/mma.5593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the backward problem of determining initial condition for Rayleigh-Stokes where the data are given at a fixed time. The problem has many applications in some non-Newtonian fluids. We give some regularity properties of the solution to backward problem.
引用
收藏
页码:3481 / 3495
页数:15
相关论文
共 23 条
[1]   Identification of source term for the Rayleigh-Stokes problem with Gaussian random noise [J].
Anh Triet Nguyen ;
Vu Cam Hoan Luu ;
Hoang Luc Nguyen ;
Huy Tuan Nguyen ;
Van Thinh Nguyen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (14) :5593-5601
[2]  
[Anonymous], 1990, FRACTIONAL DIFFERENT
[3]   Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator [J].
Arendt, W. ;
ter Elst, A. F. M. ;
Warma, M. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (01) :1-24
[4]   An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid [J].
Bazhlekova, Emilia ;
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
NUMERISCHE MATHEMATIK, 2015, 131 (01) :1-31
[5]   Numerical simulation of multi-dimensional distributed-order generalized Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
NONLINEAR DYNAMICS, 2017, 89 (02) :1415-1432
[6]   Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :1100-1117
[7]   An improved collocation method for multi-dimensional space-time variable-order fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
APPLIED NUMERICAL MATHEMATICS, 2017, 111 :197-218
[8]   Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation [J].
Bhrawy, A. H. ;
Zaky, M. A. .
NONLINEAR DYNAMICS, 2015, 80 (1-2) :101-116
[9]   A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 :876-895
[10]   NONLINEAR STOCHASTIC TIME-FRACTIONAL DIFFUSION EQUATIONS ON R: MOMENTS, HOLDER REGULARITY AND INTERMITTENCY [J].
Chen, Le .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (12) :8497-8535