Blow-up analysis for a system of heat equations with nonlinear flux which obey different laws

被引:9
作者
Song, Xianfa [1 ]
机构
[1] China Univ Min & Technol Beijing, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
system of heat equations; nonlinear boundary conditions; blow-up rate; blow-up set;
D O I
10.1016/j.na.2007.07.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of heat equations u(t) = Delta u and upsilon(t) = Delta upsilon in Omega x (0, T) completely coupled by nonlinear boundary conditions partial derivative u/partial derivative eta = e(p upsilon) u(alpha), partial derivative upsilon/partial derivative eta = u(g) e(beta upsilon) on partial derivative Omega x (0, T). We prove that the solutions always blow up in finite time for non-zero and non-negative initial values. Also, the blow-up only occurs on partial derivative Omega with C1(T - t) - p-beta/2(pq+beta-alpha beta) <= max u (x, t) <= C-2 (T-t) - p-beta/2(pq+beta-alpha beta) log (C-3(T - t) - q+1-alpha/2(pq+beta-alpha beta)) <= log (C-4(T-t) - q+1-alpha/2(pq+beta-alpha beta)) for p, q > 0, 0 <= alpha < 1 and 0 <= beta < p. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1971 / 1980
页数:10
相关论文
共 39 条
[1]   Blow-up vs. global existence for quasilinear parabolic systems with a nonlinear boundary condition [J].
Acosta, G ;
Rossi, JD .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (05) :711-724
[2]  
AMANN H, 1998, J DIFFER EQUATIONS, V72, P201
[3]  
[Anonymous], 1999, REND MAT APPL
[4]   A DESCRIPTION OF BLOWUP FOR THE SOLID FUEL IGNITION MODEL [J].
BEBERNES, J ;
BRESSAN, A ;
EBERLY, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (02) :295-305
[5]   A complete classification of simultaneous blow-up rates [J].
Braendle, Cristina ;
Quiros, Fernando ;
Rossi, Julio D. .
APPLIED MATHEMATICS LETTERS, 2006, 19 (07) :599-603
[6]  
Chlebík M, 2000, MATH METHOD APPL SCI, V23, P1323, DOI 10.1002/1099-1476(200010)23:15<1323::AID-MMA167>3.0.CO
[7]  
2-W
[8]  
Chlebík M, 2003, DYNAM CONT DIS SER A, V10, P525
[9]   Blow-up rates for parabolic systems [J].
Deng, K .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1996, 47 (01) :132-143
[10]   GLOBAL EXISTENCE AND BLOW-UP FOR A SYSTEM OF HEAT-EQUATIONS WITH NONLINEAR BOUNDARY-CONDITIONS [J].
DENG, K .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1995, 18 (04) :307-315