Electrochemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density

被引:119
作者
Wang, Jingping [1 ,2 ]
Xu, Youlong [1 ]
Zhu, Jianbo [1 ]
Ren, Penggang [3 ]
机构
[1] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China
[2] Shaanxi Univ Sci & Technol, Coll Chem & Chem Engn, Xian 710021, Peoples R China
[3] Xian Univ Technol, Inst Printing & Packaging Engn, Xian 710048, Shaanxi, Peoples R China
基金
国家高技术研究发展计划(863计划); 美国国家科学基金会; 中国国家自然科学基金;
关键词
Graphene oxide; Polypyrrole; Composite; In situ polymerization; Supercapacitors; SUPERCAPACITORS;
D O I
10.1016/j.jpowsour.2012.02.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate a novel method of in situ galvanostatic polymerization to prepare reduced graphene oxide (RGO)/polypyrrole composite (RGO-PPy) for supercapacitors electrode. The PPy and the RGO interact closely and form the composite with porous structure. The BET specific surface area of RGO-PPy reaches 108 m(2) g(-1). The RGO-PPy composites show the high protonation level on polypyrrole (PPy) ring (41.1%), which can be related to the doping of PPy by oxygen-containing groups in RGO sheet. The RGO-PPy electrodes exhibit good electrochemical performance. The specific capacitance of RGO-PPy electrodes still reaches 224 F g(-1) at charge/discharge current density of 240 A g(-1) within an electrochemical windows of 0.8 V in 3 M KCl aqueous solution. The specific power of RGO-PPy electrodes reaches 38.6 kW kg(-1) when its specific energy reaches 2.5 Wh kg(-1) in two-electrode cell. The RGO-PPy electrodes have good cycle stability and show less than 17% specific capacitance decay at a charge/discharge current of 30 A g(-1) within an electrochemical windows of 0.8 V after 5000 cycles. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 143
页数:6
相关论文
共 25 条
[1]   Multi layered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes [J].
Biswas, Sanjib ;
Drzal, Lawrence T. .
CHEMISTRY OF MATERIALS, 2010, 22 (20) :5667-5671
[2]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[3]   An insight into the overoxidation of polypyrrole materials [J].
Debiemme-Chouvy, Catherine ;
Tran, Thi Tuyet Mai .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (06) :947-950
[4]   Effect of electrolyte concentration and nature on the morphology and the electrical properties of electropolymerized polypyrrole nanotubules [J].
Demoustier-Champagne, S ;
Stavaux, PY .
CHEMISTRY OF MATERIALS, 1999, 11 (03) :829-834
[5]   Ideally capacitive behavior and X-ray photoelectron spectroscopy characterization of polypyrrole - Effects of polymerization temperatures and thickness/coverage [J].
Hu, CC ;
Lin, XX .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (08) :A1049-A1057
[6]   Anodic composite deposition of RuO2•xH2O-TiO2 for electrochemical supercapacitors [J].
Hu, Chi-Chang ;
Guo, Hsin-Yi ;
Chang, Kuo-Hsin ;
Huang, Ching-Chun .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (08) :1631-1634
[7]   Towards high power polypyrrole/carbon capacitors [J].
Izadi-Najafabadi, A ;
Tan, DTH ;
Madden, JD .
SYNTHETIC METALS, 2005, 152 (1-3) :129-132
[8]   Physical characterization of electrochemically and chemically synthesized polypyrroles [J].
Joo, J ;
Lee, JK ;
Lee, SY ;
Jsng, KS ;
Oh, EJ ;
Epstein, AJ .
MACROMOLECULES, 2000, 33 (14) :5131-5136
[9]   Supercapacitors from nanotubes/polypyrrole composites [J].
Jurewicz, K ;
Delpeux, S ;
Bertagna, V ;
Béguin, F ;
Frackowiak, E .
CHEMICAL PHYSICS LETTERS, 2001, 347 (1-3) :36-40
[10]   Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size [J].
Kim, Ji-Young ;
Kim, Kwang Heon ;
Kim, Kwang Bum .
JOURNAL OF POWER SOURCES, 2008, 176 (01) :396-402