Monocular Depth Estimation Using Relative Depth Maps

被引:92
作者
Lee, Jae-Han [1 ]
Kim, Chang-Su [1 ]
机构
[1] Korea Univ, Seoul, South Korea
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/CVPR.2019.00996
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel algorithm for monocular depth estimation using relative depth maps. First, using a convolutional neural network, we estimate relative depths between pairs of regions, as well as ordinary depths, at various scales. Second, we restore relative depth maps from selectively estimated data based on the rank-1 property of pairwise comparison matrices. Third, we decompose ordinary and relative depth maps into components and recombine them optimally to reconstruct a final depth map. Experimental results show that the proposed algorithm provides the state-of-art depth estimation performance.
引用
收藏
页码:9721 / 9730
页数:10
相关论文
共 69 条
[1]   Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization [J].
Altman, A ;
Gondzio, J .
OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4) :275-302
[2]  
[Anonymous], 2010, CVPR
[3]  
[Anonymous], 2018, CVPR
[4]  
[Anonymous], 2012, NIPS
[5]  
[Anonymous], JOINT PATT REC S
[6]  
[Anonymous], 2018, ECCV
[7]  
[Anonymous], 2015, ICCV
[8]  
[Anonymous], WACV
[9]  
[Anonymous], 2006, CVPR
[10]  
[Anonymous], CVPR