Finite-time boundedness and stabilisation for a class of non-linear quadratic time-delay systems with disturbances

被引:17
作者
Chen, Fu [1 ]
Xu, Shengyuan [1 ]
Zou, Yun [1 ]
Zhang, Minsong [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
delays; linear matrix inequalities; Lyapunov methods; nonlinear control systems; stability; finite-time boundedness; nonlinear quadratic time-delay systems; FTB; exogenous disturbances; quadratic Lyapunov function; Razumikhin-type techniques; sufficient conditions; quadratic stabilisation; LINEAR-SYSTEMS; STABILITY;
D O I
10.1049/iet-cta.2012.0631
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problems of finite-time boundedness (FTB) and stabilisation for a class of non-linear quadratic time-delay systems with exogenous disturbances are investigated in this study. Based on the quadratic Lyapunov function, Razumikhin-type techniques, and a particular presentation for the quadratic terms, sufficient conditions for FTB and stabilisation for quadratic systems with exogenous disturbances are derived in terms of linear matrix inequalities. Simulation examples are given to verify the effectiveness of the methodology proposed in this study.
引用
收藏
页码:1683 / 1688
页数:6
相关论文
共 15 条
[1]   On the region of attraction of nonlinear quadratic systems [J].
Amato, F. ;
Cosentino, C. ;
Merola, A. .
AUTOMATICA, 2007, 43 (12) :2119-2123
[2]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[3]   Stability analysis of nonlinear quadratic systems via polyhedral Lyapunov functions [J].
Amato, Francesco ;
Calabrese, Francesco ;
Cosentino, Carlo ;
Merola, Alessio .
AUTOMATICA, 2011, 47 (03) :614-617
[4]   Finite-Time Stability of Linear Time-Varying Systems: Analysis and Controller Design [J].
Amato, Francesco ;
Ariola, Marco ;
Cosentino, Carlo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (04) :1003-1008
[5]   Sufficient Conditions for Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems [J].
Amato, Francesco ;
Cosentino, Carlo ;
Merola, Alessio .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (02) :430-434
[6]   Finite-time stability of linear time-varying systems with jumps [J].
Amato, Francesco ;
Ambrosino, Roberto ;
Ariola, Marco ;
Cosentino, Carlo .
AUTOMATICA, 2009, 45 (05) :1354-1358
[7]   Finite time stability of a class of hybrid dynamical systems [J].
Chen, G. ;
Yang, Y. ;
Li, J. .
IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (01) :8-13
[8]   Nonlinear State Feedback Design With a Guaranteed Stability Domain for Locally Stabilizable Unstable Quadratic Systems [J].
Coutinho, Daniel ;
de Souza, Carlos E. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (02) :360-370
[9]   Finite-Time Stabilization of Linear Time-Varying Continuous Systems [J].
Garcia, Germain ;
Tarbouriech, Sophie ;
Bernussou, Jacques .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) :364-369
[10]  
Hale J., 1997, THEORY FUNCTIONAL DI