Proper Holomorphic Embeddings of Riemann Surfaces with Arbitrary Topology into C2

被引:18
作者
Alarcon, Antonio [1 ]
Lopez, Francisco J. [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
Riemann surfaces; Holomorphic embeddings;
D O I
10.1007/s12220-012-9306-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that given an open Riemann surface of arbitrary (finite or infinite) topology, there exists an open domain M subset of N homeomorphic to N which properly holomorphically embeds in C-2. Furthermore, M can be chosen with hyperbolic conformal type. In particular, any open orientable surface M admits a complex structure C such that (M, C) can be properly holomorphically embedded into C-2.
引用
收藏
页码:1794 / 1805
页数:12
相关论文
共 18 条
[1]   EXPLICIT IMBEDDING OF (PUNCTURED) DISK INTO C2 [J].
ALEXANDER, H .
COMMENTARII MATHEMATICI HELVETICI, 1977, 52 (04) :539-544
[2]  
Bell S.R., 1990, ENCYCL MATH SCI, P1
[3]   MAPPINGS OF PARTIALLY ANALYTIC SPACES [J].
BISHOP, E .
AMERICAN JOURNAL OF MATHEMATICS, 1961, 83 (02) :209-&
[4]   On holomorphic embedding of planar domains into C2 [J].
Cerne, M ;
Globevnik, J .
JOURNAL D ANALYSE MATHEMATIQUE, 2000, 81 (1) :269-282
[5]  
Cerne M, 2002, MATH RES LETT, V9, P683
[6]   Holomorphic submersions from Stein manifolds [J].
Forstneric, F .
ANNALES DE L INSTITUT FOURIER, 2004, 54 (06) :1913-+
[7]  
Forstneric F., 2011, ARXIV11105354
[8]   Bordered Riemann surfaces in C2 [J].
Forstneric, Franc ;
Wold, Erlend Fornaess .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (01) :100-114
[9]   HOLOMORPHIC EMBEDDINGS OF PLANAR DOMAINS INTO C-2 [J].
GLOBEVNIK, J ;
STENSONES, B .
MATHEMATISCHE ANNALEN, 1995, 303 (04) :579-597
[10]   IMBEDDING ANNULI IN C-2 [J].
LAUFER, HB .
JOURNAL D ANALYSE MATHEMATIQUE, 1973, 26 :187-215