Giant component of the soft random geometric graph

被引:2
作者
Penrose, Mathew D. [1 ]
机构
[1] Univ Bath, Bath, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
soft random geometric graph; random connection model; continuum percolation; PERCOLATION;
D O I
10.1214/22-ECP491
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a 2-dimensional soft random geometric graph G(lambda, s, phi), obtained by placing a Poisson(lambda s(2)) number of vertices uniformly at random in a square of side s, with edges placed between each pair x, y of vertices with probability phi(parallel to x - y parallel to), where phi : R+ -> [0, 1] is a finite-range connection function. This paper is concerned with the asymptotic behaviour of the graph G(lambda, s, phi) in the large-s limit with (lambda, phi) fixed. We prove that the proportion of vertices in the largest component converges in probability to the percolation probability for the corresponding random connection model, which is a random graph defined similarly for a Poisson process on the whole plane. We do not cover the case where lambda equals the critical value lambda(c)(phi)
引用
收藏
页数:10
相关论文
共 10 条
[1]   Absence of Infinite Cluster for Critical Bernoulli Percolation on Slabs [J].
Duminil-Copin, Hugo ;
Sidoravicius, Vladas ;
Tassion, Vincent .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (07) :1397-1411
[2]  
Heydenreich M, 2023, Arxiv, DOI arXiv:1908.11356
[3]  
LAST G., 2018, LECT POISSON PROCESS
[4]  
Lichev L, 2022, Arxiv, DOI arXiv:2205.10923
[5]  
Liggett TM, 1997, ANN PROBAB, V25, P71
[6]   The random connection model in high dimensions [J].
Meester, R ;
Penrose, MD ;
Sarkar, A .
STATISTICS & PROBABILITY LETTERS, 1997, 35 (02) :145-153
[7]  
Meester R., 1996, Continuum Percolation
[8]  
Penrose M., 2003, Random Geometric Graphs
[9]  
Penrose MD, 1996, ANN APPL PROBAB, V6, P528
[10]   CONNECTIVITY OF SOFT RANDOM GEOMETRIC GRAPHS [J].
Penrose, Mathew D. .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (02) :986-1028