(M)over-bar0,n IS NOT A MORI DREAM SPACE

被引:42
作者
Castravet, Ana-Maria [1 ]
Tevelev, Jenia [2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
COX RING; MODULI SPACE; CURVES; CONE;
D O I
10.1215/00127094-3119846
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building on the work of Goto, Nishida, and Watanabe on symbolic Rees algebras of monomial primes, we prove that the moduli space of stable rational curves with n punctures is not a Mori dream space for n > 133. This answers a question posed by Hu and Keel.
引用
收藏
页码:1641 / 1667
页数:27
相关论文
共 37 条
[11]  
Cox D., 2011, TORIC VARIETIES, DOI DOI 10.1090/GSM/124
[12]  
CUTKOSKY SD, 1991, J REINE ANGEW MATH, V416, P71
[13]  
EISENBUD D., 1995, Graduate Texts in Math., V150, DOI [10.1007/978-1-4612-5350-1, DOI 10.1007/978-1-4612-5350-1]
[14]  
FEDORCHUK M., PREPRINT
[15]  
Fulton W., 1989, ALGEBRAIC CURVES INT
[16]   GIT compactifications of M0, n and flips [J].
Giansiracusa, Noah ;
Jensen, David ;
Moon, Han-Bom .
ADVANCES IN MATHEMATICS, 2013, 248 :242-278
[17]   The cone of type A, level 1, conformal blocks divisors [J].
Giansiracusa, Noah ;
Gibney, Angela .
ADVANCES IN MATHEMATICS, 2012, 231 (02) :798-814
[18]   Towards the ample cone of (M)over-barg,n [J].
Gibney, A ;
Keel, S ;
Morrison, I .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :273-294
[19]   Lower and Upper Bounds for Nef Cones [J].
Gibney, Angela ;
Maclagan, Diane .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (14) :3224-3255
[20]   Equations for Chow and Hilbert quotients [J].
Gibney, Angela ;
Maclagan, Diane .
ALGEBRA & NUMBER THEORY, 2010, 4 (07) :855-885