(M)over-bar0,n IS NOT A MORI DREAM SPACE

被引:42
作者
Castravet, Ana-Maria [1 ]
Tevelev, Jenia [2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
COX RING; MODULI SPACE; CURVES; CONE;
D O I
10.1215/00127094-3119846
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building on the work of Goto, Nishida, and Watanabe on symbolic Rees algebras of monomial primes, we prove that the moduli space of stable rational curves with n punctures is not a Mori dream space for n > 133. This answers a question posed by Hu and Keel.
引用
收藏
页码:1641 / 1667
页数:27
相关论文
共 37 条
[1]   HIGHER-LEVEL sl2 CONFORMAL BLOCKS DIVISORS ON (M)over-bar0,n [J].
Alexeev, Valery ;
Gibney, Angela ;
Swinarski, David .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (01) :7-30
[3]  
BAKER H., PREPRINT
[4]  
Batyrev VV, 2004, PROG MATH, V226, P85
[5]  
BELKALE P., PREPRINT
[6]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[7]   Hypertrees, projections, and moduli of stable rational curves [J].
Castravet, Ana-Maria ;
Tevelev, Jenia .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 675 :121-180
[8]   Rigid curves on (M)over-bar0,n and arithmetic breaks [J].
Castravet, Ana-Maria ;
Tevelev, Jenia .
COMPACT MODULI SPACES AND VECTOR BUNDLES, 2012, 564 :19-+
[9]   THE COX RING OF (M)over-bar0,6 [J].
Castravet, Ana-Maria .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) :3851-3878
[10]  
Chen DW, 2014, MATH ANN, V359, P891, DOI 10.1007/s00208-014-1027-5