Compensated compactness, paracommutators, and hardy spaces

被引:11
作者
Li, C [1 ]
McIntosh, A [1 ]
Zhang, K [1 ]
Wu, Z [1 ]
机构
[1] UNIV ALABAMA,DEPT MATH,TUSCALOOSA,AL 35487
基金
澳大利亚研究理事会;
关键词
D O I
10.1006/jfan.1997.3125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B-1:R-n x R-N1 --> R-m1, B-2:R-n x R-N2 --> R-m2 and Q:R-m2 --> R-m1 be bilinear forms which are related as follows: if mu and nu satisfy B-1(xi, mu) = 0 and B-2(xi, nu) = 0 for some xi not equal 0, then mu(tau)Q nu = 0. Suppose p(-1) + q(-1) = 1. Coifman, Lions, Meyer and Semmes proved that, if u is an element of L-p(R-n) and v is an element of L-q(R-n), and the first order systems B-1(D, u) = 0, B-2(D, v) = 0 hold, then u(tau)Qv belongs to the Hardy space H-1(R-n), provided that both (i) p = q = 2, and (ii) the ranks of the linear maps B-j(xi,.):R-Nj --> R-m1 are constant. We apply the theory of paracommutators to show that this result remains valid when only one of the hypotheses (i), (ii) is postulated. The removal of the constant-rank condition when p = q = 2 involves the use of a deep result of Lojasiewicz from singularity theory. (C) 1997 Academic Press.
引用
收藏
页码:289 / 306
页数:18
相关论文
共 13 条
[1]  
COIFMAN R, 1993, J MATH PURE APPL, V72, P247
[2]  
COIFMAN R, HARDY SPACE ESTIMATE, V1
[3]  
COIFMAN RR, 1991, CR HEBD ACAD SCI, V309, P945
[4]  
DOBYINSKI S, THESIS U PARIS DAUPH
[5]   PARACOMMUTATORS - BOUNDEDNESS AND SCHATTEN-VONNEUMANN PROPERTIES [J].
JANSON, S ;
PEETRE, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 305 (02) :467-504
[6]   ON WEAK-CONVERGENCE IN H-1(R(D)) [J].
JONES, PW ;
JOURNE, JL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (01) :137-138
[7]  
Li C.L., UNPUB
[8]  
LOJASIEWICZ S, 1965, UNPUB ENSEMBLES SEMI
[9]  
MULLER S, 1990, J REINE ANGEW MATH, V412, P20
[10]  
PENG LZ, 1988, ARK MAT, V26, P315