How Carbon-Nano-Fibers attach to Ni foam

被引:63
作者
Chinthaginjala, J. K.
Thakur, D. B.
Seshan, K.
Lefferts, L. [1 ]
机构
[1] Univ Twente, IMPACT, NL-7500 AE Enschede, Netherlands
关键词
D O I
10.1016/j.carbon.2008.07.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A stable Carbon-Nano-Fiber (CNF) layer was catalytically grown on Ni foam by decomposing ethylene. Scanning electron microscopy of the cross-section of the deposited layer on Ni foam revealed the presence of two distinct carbon layers; an apparently dense layer ('C-layer') at the carbon-Ni interface and a CNF layer on top of that. Variation of the growth time demonstrated that both layers develop in parallel. Characterization using temperature programmed gasification in H-2, Raman spectroscopy and transmission electron microscopy confirmed that both layers consists of graphene planes, which are better ordered in CNFs as compared to C-layer. The nickel surface and the attached carbon layer have similar morphological features. This may be the reason for strong adhesion of the C-layer to Ni. CNFs are strongly attached to the C-layer via roots that penetrate into the C-layer. The interconnections of the Ni surface, C-layer and CNFs induce mechanical stability. The C-layer grows continuously with time, whereas CNF growth needs typically 20 min initiation because of the need to form small Ni particles that allow CNF formation. The continuing formation of the C-layer, also after initiation of CNF growth, is thought to be responsible for the formation of CNF roots in the C-layer. (C) 2008 Published by Elsevier Ltd.
引用
收藏
页码:1638 / 1647
页数:10
相关论文
共 42 条
[1]   Nanotubes from carbon [J].
Ajayan, PM .
CHEMICAL REVIEWS, 1999, 99 (07) :1787-1799
[2]   NUCLEATION AND GROWTH OF CARBON DEPOSITS FROM NICKEL CATALYZED DECOMPOSITION OF ACETYLENE [J].
BAKER, RTK ;
BARBER, MA ;
WAITE, RJ ;
HARRIS, PS ;
FEATES, FS .
JOURNAL OF CATALYSIS, 1972, 26 (01) :51-&
[3]   CARBON DEPOSITION IN STEAM REFORMING AND METHANATION [J].
BARTHOLOMEW, CH .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1982, 24 (01) :67-112
[4]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[5]   Preparation and application of carbon-nanofiber based microstructured materials as catalyst supports [J].
Chinthaginjala, J. K. ;
Seshan, K. ;
Lefferts, L. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (12) :3968-3978
[6]   Carbon nanotubes: Synthesis, integration, and properties [J].
Dai, HJ .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1035-1044
[7]   Carbon nanofibers: Catalytic synthesis and applications [J].
De Jong, KP ;
Geus, JW .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2000, 42 (04) :481-510
[8]   Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2001, 64 (07)
[9]  
FIGUEIREDO JL, 1989, ERDOL KOHLE ERDGAS P, V42, P294
[10]   Direct quantitative detection of the sp3 bonding in diamond-like carbon films using ultraviolet and visible Raman spectroscopy [J].
Gilkes, KWR ;
Prawer, S ;
Nugent, KW ;
Robertson, J ;
Sands, HS ;
Lifshitz, Y ;
Shi, X .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (10) :7283-7289