Independent sets in triangle-free cubic planar graphs

被引:27
作者
Heckman, CC
Thomas, R [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
graph; planar graph; triangle-free; independent set; stable set; maximum degree three;
D O I
10.1016/j.jctb.2005.07.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every triangle-free planar graph on n vertices with maximum degree three has an independent set with size at least 3/8n. This was suggested and later conjectured by Albertson, Bollobas and Tucker. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:253 / 275
页数:23
相关论文
共 17 条
[1]  
Albertson M., 1976, CONGRESSUS NUMERANTI, V17, P43
[2]  
[Anonymous], 1979, GRADUATE TEXTS MATH
[3]  
FAJTLOWICZ S., 1978, P 9 SE C COMB GRAPH, P269
[4]   11/30 (FINDING LARGE INDEPENDENT SETS IN CONNECTED TRIANGLE-FREE 3-REGULAR GRAPHS) [J].
FRAUGHNAUGH, K ;
LOCKE, SC .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 65 (01) :51-72
[5]  
HATAMI H, UNPUB FRACTIONAL CHR
[6]   A new proof of the independence ratio of triangle-free cubic graphs [J].
Heckman, CC ;
Thomas, R .
DISCRETE MATHEMATICS, 2001, 233 (1-3) :233-237
[7]  
Hell P, 2000, J GRAPH THEOR, V33, P14, DOI 10.1002/(SICI)1097-0118(200001)33:1<14::AID-JGT2>3.0.CO
[8]  
2-#
[9]  
HILTON AJW, 1973, B LOND MATH SOC, V5, P302, DOI DOI 10.1112/BLMS/5.3.302
[10]   INDEPENDENCE IN GRAPHS WITH MAXIMUM DEGREE-4 [J].
JONES, KF .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (03) :254-269