GENERALIZED GOLUB-KAHAN BIDIAGONALIZATION AND STOPPING CRITERIA

被引:25
作者
Arioli, M. [1 ]
机构
[1] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
Golub-Kahan bidiagonalization; sparse matrices; stopping criteria; augmented systems; INDEFINITE SYSTEMS; ERROR ESTIMATION; STABILITY; ALGORITHM; MATRICES; LSQR;
D O I
10.1137/120866543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Golub-Kahan bidiagonalization algorithm has been widely used in solving least-squares problems and in the computation of the SVD of rectangular matrices. Here we propose an algorithm based on the Golub-Kahan process for the solution of augmented systems that minimizes the norm of the error and, in particular, we propose a novel estimator of the error similar to the one proposed by Hestenes and Stiefel for the conjugate gradient method and later developed by Golub, Meurant, and Strakos. This estimator gives a lower bound for the error, and can be used as a stopping criterion for the whole process. We also propose an upper bound of the error based on Gauss-Radau quadrature. Finally, we show how we can transform augmented systems arising from the mixed finite-element approximation of partial differential equations in order to achieve a convergence rate independent of the finite dimensional problem size.
引用
收藏
页码:571 / 592
页数:22
相关论文
共 39 条
[21]  
Golub GH., 1989, MATRIX COMPUTATIONS, DOI DOI 10.56021/9781421407944
[22]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436
[23]   POSTERIORI ERROR ESTIMATES INCLUDING ALGEBRAIC ERROR AND STOPPING CRITERIA FOR ITERATIVE SOLVERS [J].
Jiranek, Pavel ;
Strakos, Zdenek ;
Vohralik, Martin .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (03) :1567-1590
[24]   Constraint preconditioning for indefinite linear systems [J].
Keller, C ;
Gould, NIM ;
Wathen, AJ .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1300-1317
[25]   Preconditioning discretizations of systems of partial differential equations [J].
Mardal, Kent-Andre ;
Winther, Ragnar .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (01) :1-40
[26]   LSQR - AN ALGORITHM FOR SPARSE LINEAR-EQUATIONS AND SPARSE LEAST-SQUARES [J].
PAIGE, CC ;
SAUNDERS, MA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (01) :43-71
[27]   BIDIAGONALIZATION OF MATRICES AND SOLUTION OF LINEAR EQUATIONS [J].
PAIGE, CC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (01) :197-209
[28]   SOLUTION OF SPARSE INDEFINITE SYSTEMS OF LINEAR EQUATIONS [J].
PAIGE, CC ;
SAUNDERS, MA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (04) :617-629
[29]   A FLEXIBLE INNER-OUTER PRECONDITIONED GMRES ALGORITHM [J].
SAAD, Y .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (02) :461-469
[30]   An efficient iterative method for the generalized Stokes problem [J].
Sarin, V ;
Sameh, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (01) :206-226