GENERALIZED GOLUB-KAHAN BIDIAGONALIZATION AND STOPPING CRITERIA

被引:25
作者
Arioli, M. [1 ]
机构
[1] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
Golub-Kahan bidiagonalization; sparse matrices; stopping criteria; augmented systems; INDEFINITE SYSTEMS; ERROR ESTIMATION; STABILITY; ALGORITHM; MATRICES; LSQR;
D O I
10.1137/120866543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Golub-Kahan bidiagonalization algorithm has been widely used in solving least-squares problems and in the computation of the SVD of rectangular matrices. Here we propose an algorithm based on the Golub-Kahan process for the solution of augmented systems that minimizes the norm of the error and, in particular, we propose a novel estimator of the error similar to the one proposed by Hestenes and Stiefel for the conjugate gradient method and later developed by Golub, Meurant, and Strakos. This estimator gives a lower bound for the error, and can be used as a stopping criterion for the whole process. We also propose an upper bound of the error based on Gauss-Radau quadrature. Finally, we show how we can transform augmented systems arising from the mixed finite-element approximation of partial differential equations in order to achieve a convergence rate independent of the finite dimensional problem size.
引用
收藏
页码:571 / 592
页数:22
相关论文
共 39 条
[1]   A stopping criterion for the conjugate gradient algorithm in a finite element method framework [J].
Arioli, M .
NUMERISCHE MATHEMATIK, 2004, 97 (01) :1-24
[2]  
Arioli M., 2013, G201332 GERAD
[3]   Preconditioning in H(div) and applications [J].
Arnold, DN ;
Falk, RS ;
Winther, R .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :957-984
[4]  
Bahriawati C., 2005, Comput. Meth. Appl. Math., V5, P333
[5]   Solving generalized least-squares problems with LSQR [J].
Benbow, SJ .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 21 (01) :166-177
[6]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[7]  
Brezis H., 1983, Analyse fonctionnelle, Theorie et applications
[8]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[9]  
Brezzi F, 2003, UNIVERSITEXT, P17
[10]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15