A stark conjecture ''over Z'' for abelian L-functions with multiple zeros

被引:88
作者
Rubin, K
机构
[1] Department of Mathematics, Ohio State University, Columbus
关键词
Stark's conjecture; L-functions; global units; Euler systems;
D O I
10.5802/aif.1505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose K/k is an abelian extension of number fields. Stark's conjecture predicts, under suitable hypotheses, the existence of a global unit epsilon of K such that the special values L'(chi, 0) for all characters chi of Gal/(K/k) can be expressed as simple linear combinations of the logarithms of the different absolute values of epsilon. In this paper we formulate an extension of this conjecture, to attempt to understand the values L((r))(chi, 0) when the order of vanishing r may be greater than one. This conjecture no longer predicts the existence of individual special global units, but rather of special elements in an exterior power of the Galois module of global units (or S-units). We also discuss connections between this conjecture, class number formulas, and Euler systems.
引用
收藏
页码:33 / &
页数:31
相关论文
共 16 条
[1]  
BROWN KS, 1982, GRADUATE TEXTS MATH, V87
[2]   VALUES OF ABELIAN L-FUNCTIONS AT NEGATIVE INTEGERS OVER TOTALLY-REAL FIELDS [J].
DELIGNE, P ;
RIBET, KA .
INVENTIONES MATHEMATICAE, 1980, 59 (03) :227-286
[3]   CYCLOTOMIC AND ELLIPTICAL UNITS [J].
GILLARD, R .
JOURNAL OF NUMBER THEORY, 1979, 11 (01) :21-48
[4]  
Gross B. H., 1988, J. Fac. Sci. Univ. Tokyo Sect. IA Math, V35, P177
[5]  
Krasner M., 1939, ACTA ARITH, V3, P133
[6]   SOLUTION OF CLASS NUMBER 2 PROBLEM FOR CYCLOTOMIC FIELDS [J].
MASLEY, JM .
INVENTIONES MATHEMATICAE, 1975, 28 (03) :243-244
[7]   CLASS FIELDS OF ABELIAN EXTENSIONS OF Q [J].
MAZUR, B ;
WILES, A .
INVENTIONES MATHEMATICAE, 1984, 76 (02) :179-330
[8]   AN EXACT SEQUENCE IN GALOIS COHOMOLOGY [J].
RIM, DS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (04) :837-&
[9]  
RUBIN K, 1992, J REINE ANGEW MATH, V425, P141
[10]   STARKS CONJECTURE AND ABELIAN L-FUNCTIONS WITH HIGHER-ORDER ZEROS AT S = 0 [J].
SANDS, JW .
ADVANCES IN MATHEMATICS, 1987, 66 (01) :62-87