A Sparse Representation-Based DOA Estimation Algorithm With Separable Observation Model

被引:19
作者
Zhao, Guanghui [1 ]
Shi, Guangming [1 ]
Shen, Fangfang [1 ]
Luo, Xi [1 ]
Niu, Yi [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2015年 / 14卷
基金
美国国家科学基金会;
关键词
Direction-of-arrival (DOA); planar array; sparse representation; OF-ARRIVAL ESTIMATION;
D O I
10.1109/LAWP.2015.2413814
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional sparse representation (SR)-based direction-of-arrival (DOA) estimation algorithms suffer from high computational complexity. To be specific, a wide angular range and a large-scale array will enlarge the scale of the spatial observation matrix, which results in huge computation cost for DOA estimation. In this letter, a new efficient DOA estimation algorithm based on the separable sparse representation (SSR-DOA for short) is derived, in which a separable structure for spatial observation matrix is introduced to reduce the complexity. Besides, a dual-sparsity strategy is engaged to make the algorithm tractable. Experimental results show that high resolution performance can be obtained efficiently by the proposed algorithm.
引用
收藏
页码:1586 / 1589
页数:4
相关论文
共 50 条
[41]   A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images [J].
Zhang, Yuxiang ;
Du, Bo ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03) :1346-1354
[42]   Sparse Representation-Based LDCT Image Quality Assessment Using the JND Model [J].
Shen, Mo ;
Sun, Rongrong ;
Ye, Wen .
IEEE ACCESS, 2025, 13 :10422-10431
[43]   A Nonlinear Sparse Representation-Based Binary Hypothesis Model for Hyperspectral Target Detection [J].
Zhang, Yuxiang ;
Zhang, Liangpei ;
Du, Bo ;
Wang, Shugen .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2513-2522
[44]   A new sparse representation-based object segmentation framework [J].
Jincao Yao ;
Huimin Yu ;
Roland Hu .
The Visual Computer, 2017, 33 :179-192
[45]   A new sparse representation-based object segmentation framework [J].
Yao, Jincao ;
Yu, Huimin ;
Hu, Roland .
VISUAL COMPUTER, 2017, 33 (02) :179-192
[46]   SPARSE REPRESENTATION-BASED APPROACH FOR UNSUPERVISED FEATURE SELECTION [J].
Su, Ya-Ru ;
Li, Chuan-Xi ;
Wang, Ru-Jing ;
Chen, Peng .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2014, 28 (03)
[47]   SRNet: Sparse representation-based network for image denoising [J].
Sheng, Jiechao ;
Lv, Guoqiang ;
Wang, Zi ;
Feng, Qibin .
DIGITAL SIGNAL PROCESSING, 2022, 130
[48]   SPARSE REPRESENTATION-BASED ARCHETYPAL GRAPHS FOR SPECTRAL CLUSTERING [J].
Roscher, Ribana ;
Drees, Lukas ;
Wenzel, Susanne .
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, :2203-2206
[49]   DOA Estimation Based on Weighted l1-norm Sparse Representation for Low SNR Scenarios [J].
Zuo, Ming ;
Xie, Shuguo ;
Zhang, Xian ;
Yang, Meiling .
SENSORS, 2021, 21 (13)
[50]   PARTIAL FACE RECOGNITION: A SPARSE REPRESENTATION-BASED APPROACH [J].
Liu, Luoluo ;
Tran, Trac D. ;
Chin, Sang Peter .
2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, :2389-2393