PHOTOMETRIC REDSHIFTS AND QUASAR PROBABILITIES FROM A SINGLE, DATA-DRIVEN GENERATIVE MODEL

被引:102
作者
Bovy, Jo [1 ]
Myers, Adam D. [2 ,3 ]
Hennawi, Joseph F. [3 ]
Hogg, David W. [1 ,3 ]
McMahon, Richard G. [4 ,5 ]
Schiminovich, David [6 ]
Sheldon, Erin S. [7 ]
Brinkmann, Jon [8 ]
Schneider, Donald P. [9 ,10 ]
Weaver, Benjamin A. [1 ]
机构
[1] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA
[2] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA
[3] Max Planck Inst Astron, D-69117 Heidelberg, Germany
[4] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[5] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England
[6] Columbia Univ, Dept Astron, New York, NY 10027 USA
[7] Brookhaven Natl Lab, Upton, NY 11973 USA
[8] Apache Point Observ, Sunspot, NM 88349 USA
[9] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA
[10] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
catalogs; cosmology: observations; galaxies: distances and redshifts; galaxies: photometry; methods: data analysis; quasars: general; DIGITAL-SKY-SURVEY; OPTICALLY THICK ABSORBERS; ACTIVE GALACTIC NUCLEI; MILKY-WAY TOMOGRAPHY; DATA RELEASE; TARGET SELECTION; BINARY QUASARS; CLUSTERING ANALYSES; CLASSIFIED QUASARS; PROBING QUASARS;
D O I
10.1088/0004-637X/749/1/41
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift, one can obtain quasar flux densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques-which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data-and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar-star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84% and 97% of the objects with Galaxy Evolution Explorer UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available.
引用
收藏
页数:20
相关论文
共 104 条
[1]   THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY [J].
Abazajian, Kevork N. ;
Adelman-McCarthy, Jennifer K. ;
Agueros, Marcel A. ;
Allam, Sahar S. ;
Prieto, Carlos Allende ;
An, Deokkeun ;
Anderson, Kurt S. J. ;
Anderson, Scott F. ;
Annis, James ;
Bahcall, Neta A. ;
Bailer-Jones, C. A. L. ;
Barentine, J. C. ;
Bassett, Bruce A. ;
Becker, Andrew C. ;
Beers, Timothy C. ;
Bell, Eric F. ;
Belokurov, Vasily ;
Berlind, Andreas A. ;
Berman, Eileen F. ;
Bernardi, Mariangela ;
Bickerton, Steven J. ;
Bizyaev, Dmitry ;
Blakeslee, John P. ;
Blanton, Michael R. ;
Bochanski, John J. ;
Boroski, William N. ;
Brewington, Howard J. ;
Brinchmann, Jarle ;
Brinkmann, J. ;
Brunner, Robert J. ;
Budavari, Tamas ;
Carey, Larry N. ;
Carliles, Samuel ;
Carr, Michael A. ;
Castander, Francisco J. ;
Cinabro, David ;
Connolly, A. J. ;
Csabai, Istvan ;
Cunha, Carlos E. ;
Czarapata, Paul C. ;
Davenport, James R. A. ;
de Haas, Ernst ;
Dilday, Ben ;
Doi, Mamoru ;
Eisenstein, Daniel J. ;
Evans, Michael L. ;
Evans, N. W. ;
Fan, Xiaohui ;
Friedman, Scott D. ;
Frieman, Joshua A. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2009, 182 (02) :543-558
[2]  
Abell P. A., 2009, ARXIV09120201V1
[3]   THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III [J].
Aihara, Hiroaki ;
Allende Prieto, Carlos ;
An, Deokkeun ;
Anderson, Scott F. ;
Aubourg, Eric ;
Balbinot, Eduardo ;
Beers, Timothy C. ;
Berlind, Andreas A. ;
Bickerton, Steven J. ;
Bizyaev, Dmitry ;
Blanton, Michael R. ;
Bochanski, John J. ;
Bolton, Adam S. ;
Bovy, Jo ;
Brandt, W. N. ;
Brinkmann, J. ;
Brown, Peter J. ;
Brownstein, Joel R. ;
Busca, Nicolas G. ;
Campbell, Heather ;
Carr, Michael A. ;
Chen, Yanmei ;
Chiappini, Cristina ;
Comparat, Johan ;
Connolly, Natalia ;
Cortes, Marina ;
Croft, Rupert A. C. ;
Cuesta, Antonio J. ;
da Costa, Luiz N. ;
Davenport, James R. A. ;
Dawson, Kyle ;
Dhital, Saurav ;
Ealet, Anne ;
Ebelke, Garrett L. ;
Edmondson, Edward M. ;
Eisenstein, Daniel J. ;
Escoffier, Stephanie ;
Esposito, Massimiliano ;
Evans, Michael L. ;
Fan, Xiaohui ;
Femenia Castella, Bruno ;
Font-Ribera, Andreu ;
Frinchaboy, Peter M. ;
Ge, Jian ;
Gillespie, Bruce A. ;
Gilmore, G. ;
Gonzalez Hernandez, Jonay I. ;
Gott, J. Richard ;
Gould, Andrew ;
Grebel, Eva K. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2011, 193 (02)
[4]   LOW-RESOLUTION SPECTRAL TEMPLATES FOR ACTIVE GALACTIC NUCLEI AND GALAXIES FROM 0.03 TO 30 μm [J].
Assef, R. J. ;
Kochanek, C. S. ;
Brodwin, M. ;
Cool, R. ;
Forman, W. ;
Gonzalez, A. H. ;
Hickox, R. C. ;
Jones, C. ;
Le Floc'h, E. ;
Moustakas, J. ;
Murray, S. S. ;
Stern, D. .
ASTROPHYSICAL JOURNAL, 2010, 713 (02) :970-985
[5]   Photometric selection of QSO candidates from galex sources [J].
Atlee, David W. ;
Gould, Andrew .
ASTROPHYSICAL JOURNAL, 2007, 664 (01) :53-63
[6]   LUMINOSITY INDICATORS IN SPECTRA OF QUASI-STELLAR OBJECTS [J].
BALDWIN, JA .
ASTROPHYSICAL JOURNAL, 1977, 214 (03) :679-684
[7]   Robust machine learning applied to astronomical data sets.: III.: Probabilistic photometric redshifts for galaxies and quasars in the SDSS and GALEX [J].
Ball, Nicholas M. ;
Brunner, Robert J. ;
Myers, Adam D. ;
Strand, Natalie E. ;
Alberts, Stacey L. ;
Tcheng, David .
ASTROPHYSICAL JOURNAL, 2008, 683 (01) :12-21
[8]   Robust machine learning applied to astronomical data sets. II. quantifying photometric redshifts for quasars using instance-based learning [J].
Ball, Nicholas M. ;
Brunner, Robert J. ;
Myers, Adam D. ;
Strand, Natalie E. ;
Alberts, Stacey L. ;
Tcheng, David ;
Llora, Xavier .
ASTROPHYSICAL JOURNAL, 2007, 663 (02) :774-780
[9]   Bayesian photometric redshift estimation [J].
Benítez, N .
ASTROPHYSICAL JOURNAL, 2000, 536 (02) :571-583
[10]   The ensemble photometric variability of ∼25,000 quasars in the Sloan Digital Sky Survey [J].
Berk, DEV ;
Wilhite, BC ;
Kron, RG ;
Anderson, SF ;
Brunner, RJ ;
Hall, PB ;
Ivezic, Z ;
Richards, GT ;
Schneider, DP ;
York, DG ;
Brinkmann, JV ;
Lamb, DQ ;
Nichol, RC ;
Schlegel, DJ .
ASTROPHYSICAL JOURNAL, 2004, 601 (02) :692-714