Principles and prospects of high-energy magnesium-ion batteries

被引:8
作者
Foot, Peter J. S. [1 ]
机构
[1] Kingston Univ London, Mat, Kingston Upon Thames KT1 2EE, Surrey, England
关键词
CATHODE MATERIAL; INTERCALATION; ELECTROLYTES; INSERTION; MG2+;
D O I
10.3184/003685015X14388749247375
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In the last decade or so, lithium batteries have gained important niche positions in the market for electrochemical storage systems. Their energy capacities per unit weight (or volume) are remarkably better than those of traditional batteries - yet they appear to be approaching their practical limit, and alternative cell systems are under active investigation. The potential advantages of replacing lithium by magnesium have long been recognised, but for years it was thought that materials limitations and technical problems would prevent them from being realised. However, a combination of commercial pressures and recent scientific breakthroughs has made it likely that magnesium batteries will soon be available for a wide range of applications; they are expected to be cheaper and safer than those based on lithium, with comparable performance. This article briefly reviews the current situation and looks at the general background, principles and cell components, outlining some of the technical problems and discussing some promising materials for magnesium-ion batteries.
引用
收藏
页码:264 / 275
页数:12
相关论文
共 50 条
[41]   Electrolytes for high-energy lithium batteries [J].
Jennifer L. Schaefer ;
Yingying Lu ;
Surya S. Moganty ;
Praveen Agarwal ;
N. Jayaprakash ;
Lynden A. Archer .
Applied Nanoscience, 2012, 2 :91-109
[42]   High-Energy Aqueous Lithium Batteries [J].
Eftekhari, Ali .
ADVANCED ENERGY MATERIALS, 2018, 8 (24)
[43]   Electrolytes for high-energy lithium batteries [J].
Schaefer, Jennifer L. ;
Lu, Yingying ;
Moganty, Surya S. ;
Agarwal, Praveen ;
Jayaprakash, N. ;
Archer, Lynden A. .
APPLIED NANOSCIENCE, 2012, 2 (02) :91-109
[44]   Organic cathode materials for rechargeable magnesium-ion batteries: Fundamentals, recent advances, and approaches to optimization [J].
He, Xiaoqian ;
Cheng, Ruiqi ;
Sun, Xinyu ;
Xu, Hao ;
Li, Zhao ;
Sun, Fengzhan ;
Zhan, Yang ;
Zou, Jianxin ;
Laine, Richard M. .
JOURNAL OF MAGNESIUM AND ALLOYS, 2023, 11 (12) :4359-4389
[45]   Ammonium Vanadium Bronze (NH4V4O10) as a High-Capacity Cathode Material for Nonaqueous Magnesium-Ion Batteries [J].
Esparcia, Eugene A., Jr. ;
Chae, Munseok S. ;
Ocon, Joey D. ;
Hong, Seung-Tae .
CHEMISTRY OF MATERIALS, 2018, 30 (11) :3690-3696
[46]   Review of Design Routines of MXene Materials for Magnesium-Ion Energy Storage Device [J].
Zhang, Yuming ;
Yuan, Zeyu ;
Zhao, Lianjia ;
Li, Yilin ;
Qin, Xiaokun ;
Li, Junzhi ;
Han, Wei ;
Wang, Lili .
SMALL, 2023, 19 (34)
[47]   Le Chatelier's principle enables stable and sustainable aqueous sodium/magnesium-ion batteries [J].
Karlsmo, Martin ;
Hosaka, Tomooki ;
Johansson, Patrik .
JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (07) :4029-4036
[48]   Non-Nucleophilic Electrolyte Based on Ionic Liquid and Magnesium Bis(diisopropyl)amide for Rechargeable Magnesium-Ion Batteries [J].
Chellappan, Lethesh Kallidanthiyil ;
Kvello, Jannicke ;
Tolchard, Julian Richard ;
Dahl, Paul Inge ;
Hanetho, Sidsel Meli ;
Berthelot, Romain ;
Fiksdahl, Anne ;
Jayasayee, Kaushik .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) :9585-9593
[49]   High-Performance NiS2 Hollow Nanosphere Cathodes in Magnesium-Ion Batteries Enabled by Tunable Redox Chemistry [J].
Wang, Jianbiao ;
Handoko, Albertus D. ;
Bai, Yang ;
Yang, Gaoliang ;
Li, Yuanjian ;
Xing, Zhenxiang ;
Fai Ng, Man ;
Seh, Zhi Wei .
NANO LETTERS, 2022, 22 (24) :10184-10191
[50]   H2O-Mg2+ Waltz-Like Shuttle Enables High-Capacity and Ultralong-Life Magnesium-Ion Batteries [J].
Ma, Xiu-Fen ;
Zhao, Bai-Qing ;
Liu, Hongyu ;
Tan, Jing ;
Li, Hong-Yi ;
Zhang, Xie ;
Diao, Jiang ;
Yue, Jili ;
Huang, Guangsheng ;
Wang, Jingfeng ;
Pan, Fusheng .
ADVANCED SCIENCE, 2024, 11 (25)