THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES

被引:3
|
作者
de Berg, Mark [1 ]
van Nijnatten, Fred [1 ]
Sitters, Rene [2 ]
Woeginger, Gerhard J. [1 ]
Wolff, Alexander [3 ]
机构
[1] TU Eindhoven, Dept Math & Comp Sci, Eindhoven, Netherlands
[2] Vrije Univ Amsterdam, Fac Econ & Business Adm, Amsterdam, Netherlands
[3] Univ Wurzburg, Lehrstuhl Informat 1, Wurzburg, Germany
关键词
Geometric traveling salesman problem; power-assignment in wireless networks; distance-power gradient; NP-hard; APX-hard; APPROXIMATION ALGORITHMS; PERFORMANCE GUARANTEES; ASSIGNMENT PROBLEMS; POWER-CONSUMPTION; RANGE ASSIGNMENT; NETWORKS; CONNECTIVITY;
D O I
10.4230/LIPIcs.STACS.2010.2458
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let P be a set of points in R-d, and let alpha >= 1 be a real number. We define the distance between two points p, q epsilon P as vertical bar pq vertical bar(alpha), where vertical bar pq vertical bar denotes the standard Euclidean distance between p and q. We denote the traveling salesman problem under this distance function by Tsp(d, alpha). We design a 5-approximation algorithm for Tsp(2,2) and generalize this result to obtain an approximation factor of 3(alpha-1) + root 6(alpha)/3 for d = 2 and all alpha >= 2. We also study the variant Rev-Tsp of the problem where the traveling salesman is allowed to revisit points. We present a polynomial-time approximation scheme for Rev-Tsp(2, alpha) with alpha >= 2, and we show that Rev-Tsp(d, alpha) is apx-hard if d >= 3 and alpha > 1. The apx-hardness proof carries over to Tsp(d, alpha) for the same parameter ranges.
引用
收藏
页码:239 / 250
页数:12
相关论文
共 50 条
  • [1] The noisy Euclidean traveling salesman problem and learning
    Braun, ML
    Buhmann, JM
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 351 - 358
  • [2] Non-euclidean traveling salesman problem
    Saalweachter, John
    Pizlo, Zygmunt
    DECISION MODELING AND BEHAVIOR IN COMPLEX AND UNCERTAIN ENVIRONMENTS, 2008, 21 : 339 - 358
  • [3] Simplicity and hardness of the maximum traveling salesman problem under geometric distances
    Fekete, SP
    PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1999, : 337 - 345
  • [4] THE TRAVELING SALESMAN PROBLEM WITH DISTANCES ONE AND 2
    PAPADIMITRIOU, CH
    YANNAKAKIS, M
    MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (01) : 1 - 11
  • [5] Hard to solve instances of the Euclidean Traveling Salesman Problem
    Hougardy, Stefan
    Zhong, Xianghui
    MATHEMATICAL PROGRAMMING COMPUTATION, 2021, 13 (01) : 51 - 74
  • [6] A Hybrid Heuristic Algorithm for the Euclidean Traveling Salesman Problem
    Singh, Dharm Raj
    Singh, Manoj Kumar
    Singh, Tarkeshwar
    2015 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION & AUTOMATION (ICCCA), 2015, : 773 - 778
  • [7] Hierarchical Approach in Clustering to Euclidean Traveling Salesman Problem
    Fajar, Abdulah
    Herman, Nanna Suryana
    Abu, Nur Azman
    Shahib, Sahrin
    ADVANCED RESEARCH ON ELECTRONIC COMMERCE, WEB APPLICATION, AND COMMUNICATION, PT 1, 2011, 143 : 192 - +
  • [8] The random link approximation for the Euclidean traveling salesman problem
    Cerf, NJ
    deMonvel, JB
    Bohigas, O
    Martin, OC
    Percus, AG
    JOURNAL DE PHYSIQUE I, 1997, 7 (01): : 117 - 136
  • [9] A memetic neural network for the Euclidean traveling salesman problem
    Creput, Jean-Charles
    Koukam, Abderrafiaa
    NEUROCOMPUTING, 2009, 72 (4-6) : 1250 - 1264
  • [10] A new combined heuristic for the Euclidean traveling salesman problem
    Yang, Fei
    Lu, Yijiang
    Proceedings of the First International Conference on Information and Management Sciences, 2002, 1 : 102 - 105