Radio frequency interference mitigation using pseudoinverse learning autoencoders

被引:7
|
作者
Wang, Hong-Feng [1 ,2 ,3 ,5 ]
Yuan, Mao [2 ,6 ]
Yin, Qian [1 ]
Guo, Ping [4 ]
Zhu, Wei-Wei [2 ]
Li, Di [2 ,6 ,8 ]
Feng, Si-Bo [7 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Image Proc & Pattern Recognit Lab, Beijing 100875, Peoples R China
[2] Chinese Acad Sci, Natl Astron Observ, CAS Key Lab FAST, Beijing 100101, Peoples R China
[3] Dezhou Univ, Sch Informat Management, Dezhou 253023, Peoples R China
[4] Beijing Normal Univ, Sch Syst Sci, Image Proc & Pattern Recognit Lab, Beijing 100875, Peoples R China
[5] Dezhou Univ, Inst Astron Sci, Dezhou 253023, Peoples R China
[6] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[7] Hanvon Technol Co Ltd, Beijing 100193, Peoples R China
[8] Univ KwaZulu Natal, NAOC UKZN Computat Astrophys Ctr, ZA-4000 Durban, South Africa
基金
中国国家自然科学基金;
关键词
pulsars; general; methods; numerical; data analysis; CLASSIFICATION; TELESCOPE; SOFTWARE; REMOVAL; ARRAYS;
D O I
10.1088/1674-4527/20/8/114
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Radio frequency interference (RFI) is an important challenge in radio astronomy. RFI comes from various sources and increasingly impacts astronomical observation as telescopes become more sensitive. In this study, we propose a fast and effective method for removing RFI in pulsar data. We use pseudo-inverse learning to train a single hidden layer auto-encoder (AE). We demonstrate that the AE can quickly learn the RFI signatures and then remove them from fast-sampled spectra, leaving real pulsar signals. This method has the advantage over traditional threshold-based filter method in that it does not completely remove contaminated channels, which could also contain useful astronomical information.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Transfer learning for denoising the echolocation clicks of finless porpoise (Neophocaena phocaenoides sunameri) using deep convolutional autoencoders
    Yang, Wuyi
    Chang, Wenlei
    Song, Zhongchang
    Zhang, Yu
    Wang, Xianyan
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 150 (02) : 1243 - 1250
  • [42] A multi-band AGN-SFG classifier for extragalactic radio surveys using machine learning
    Karsten, J.
    Wang, L.
    Margalef-Bentabol, B.
    Best, P. N.
    Kondapally, R.
    La Marca, A.
    Morganti, R.
    Rottgering, H. J. A.
    Vaccari, M.
    Sabater, J.
    ASTRONOMY & ASTROPHYSICS, 2023, 675
  • [43] A deep learning framework for financial time series using stacked autoencoders and long-short term memory
    Bao, Wei
    Yue, Jun
    Rao, Yulei
    PLOS ONE, 2017, 12 (07):
  • [44] Analysis of Extremely Obese Individuals Using Deep Learning Stacked Autoencoders and Genome-Wide Genetic Data
    Montanez, Casimiro A. Curbelo
    Fergus, Paul
    Chalmers, Carl
    Hind, Jade
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2018, 2020, 11925 : 262 - 276
  • [45] A Taxonomy of Multi-Modal Cyber Radio Frequency (CRF) Mitigation Based on Passive Geo-location and Hardware Characteristics
    Richter, Yiftach
    Danieli, Erez
    Levi, Itamar
    Richter, Rei
    2024 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, COMMUNICATIONS, ANTENNAS, BIOMEDICAL ENGINEERING AND ELECTRONIC SYSTEMS, COMCAS 2024, 2024,
  • [46] Radio Frequency Interference and Lightning Studies of a Square Kilometer Array Demonstrator Structure (vol 53, pg 543, 2011)
    Wiid, Pieter Gideon
    Reader, Howard Charles
    Geschke, Riana Helena
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2012, 54 (01) : 228 - 228
  • [47] Automatic Microemboli Characterization Using Convolutional Neural Networks and Radio Frequency Signals
    Tafsast, Abdelghani
    Ferroudji, Karim
    Hadjili, Mohamed Laid
    Bouakaz, Ayache
    Benoudjit, Nabil
    2018 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRICAL ENGINEERING (ICCEE), 2018, : 235 - 238
  • [48] Identification of Communication Signals Using Learning Approaches for Cognitive Radio Applications
    Xu, Zhengjia
    Petrunin, Ivan
    Tsourdos, Antonios
    IEEE ACCESS, 2020, 8 (08): : 128930 - 128941
  • [49] A very wide band telescope for Planck using optical and radio frequency techniques
    Fargant, G
    Dubruel, D
    Cornut, M
    Riti, JB
    Passvogel, T
    De Maagt, P
    Anderegg, M
    Tauber, J
    UV, OPTICAL, AND IR SPACE TELESCOPES AND INSTRUMENTS, 2000, 4013 : 69 - 79
  • [50] Fast and Robust Exudate Detection in Retinal Fundus Images Using Extreme Learning Machine Autoencoders and Modified KAZE Features
    Mohan, N. Jagan
    Murugan, R.
    Goel, Tripti
    Roy, Parthapratim
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (03) : 496 - 513