Finite-temperature quantum billiards

被引:0
作者
Salomov, UR
Matrasulov, DU
Khanna, FC [2 ]
Milibaeva, GM
机构
[1] Uzbek Acad Sci, Dept Heat Phys, 28 Katartal St, Tashkent 700135, Uzbekistan
[2] Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada
来源
NON-LINEAR DYNAMICS AND FUNDAMENTAL INTERACTIONS | 2006年 / 213卷
基金
加拿大自然科学与工程研究理事会;
关键词
quantum chaos; finite-temperature; quantum billiard;
D O I
10.1007/1-4020-3949-2_13
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A method for the computation of eigenvalues of quantum billiard is offered. This method is based on combining of boundary integral method and thermofield dynamics formalism.
引用
收藏
页码:167 / +
页数:2
相关论文
共 50 条
[31]   Power spectrum analysis of experimental Sinai quantum billiards [J].
Faleiro, E. ;
Kuhl, U. ;
Molina, R. A. ;
Munoz, L. ;
Relano, A. ;
Retamosa, J. .
PHYSICS LETTERS A, 2006, 358 (04) :251-255
[32]   Exact sum rules for quantum billiards of arbitrary shape [J].
Amore, Paolo .
ANNALS OF PHYSICS, 2018, 388 :12-25
[33]   Finite-temperature properties of one-dimensional chiral XY model under an external field and a uniaxial potential [J].
Momma, M ;
Horiguchi, T .
PHYSICA A, 1998, 251 (3-4) :485-506
[34]   Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study [J].
Christov, Ivan P. .
ANNALS OF PHYSICS, 2016, 371 :368-378
[35]   Finite temperature quantum condensations in the space of states: general proof [J].
Ostilli, Massimo ;
Presilla, Carlo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (50)
[36]   Finite size and temperature corrections to the integer quantum Hall effect [J].
Granot, E .
PHYSICA B, 2000, 292 (3-4) :264-272
[37]   Localization in infinite billiards: A comparison between quantum and classical ergodicity [J].
Graffi, S ;
Lenci, M .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :821-830
[38]   Quantum chaos inside space-temporal Sinai billiards [J].
Addazi, Andrea .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (06)
[39]   Localization in Infinite Billiards: A Comparison Between Quantum and Classical Ergodicity [J].
Sandro Graffi ;
Marco Lenci .
Journal of Statistical Physics, 2004, 116 :821-830
[40]   Second-order number-conserving description of nonequilibrium dynamics in finite-temperature Bose-Einstein condensates [J].
Billam, T. P. ;
Mason, P. ;
Gardiner, S. A. .
PHYSICAL REVIEW A, 2013, 87 (03)