Finite-temperature quantum billiards

被引:0
|
作者
Salomov, UR
Matrasulov, DU
Khanna, FC [2 ]
Milibaeva, GM
机构
[1] Uzbek Acad Sci, Dept Heat Phys, 28 Katartal St, Tashkent 700135, Uzbekistan
[2] Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada
来源
NON-LINEAR DYNAMICS AND FUNDAMENTAL INTERACTIONS | 2006年 / 213卷
基金
加拿大自然科学与工程研究理事会;
关键词
quantum chaos; finite-temperature; quantum billiard;
D O I
10.1007/1-4020-3949-2_13
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A method for the computation of eigenvalues of quantum billiard is offered. This method is based on combining of boundary integral method and thermofield dynamics formalism.
引用
收藏
页码:167 / +
页数:2
相关论文
共 50 条
  • [1] Finite-Temperature Form Factors: a Review
    Doyon, Benjamin
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [2] Dynamic correlation and polaronic effects on the correlational properties of finite-temperature electron quantum wire
    Puttar, Devi
    Verma, Vishal
    Garg, Vinayak
    Moudgil, R. K.
    PHYSICA SCRIPTA, 2023, 98 (01)
  • [3] Finite-temperature evaluation of the Fermi density operator
    Gagel, F
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 139 (02) : 399 - 405
  • [4] Localization of Dirac Fermions in Finite-Temperature Gauge Theory
    Giordano, Matteo
    Kovacs, Tamas G.
    UNIVERSE, 2021, 7 (06)
  • [5] A finite-temperature continuum theory based on interatomic potentials
    Jiang, H
    Huang, Y
    Hwang, KC
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2005, 127 (04): : 408 - 416
  • [6] FINITE-TEMPERATURE CROSSOVER IN THE D-P MODEL
    ONO, Y
    MATSUURA, T
    KURODA, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (05) : 1595 - 1615
  • [7] The HSAB principle from a finite-temperature grand-canonical perspective
    Ramón Alain Miranda-Quintana
    Taewon David Kim
    Carlos Cárdenas
    Paul W. Ayers
    Theoretical Chemistry Accounts, 2017, 136
  • [8] Finite-temperature Bose-Einstein distribution functions of identical particles
    Kozlov, GA
    PHYSICS OF ATOMIC NUCLEI, 2004, 67 (01) : 62 - 68
  • [9] Finite-temperature Bose-Einstein distribution functions of identical particles
    G. A. Kozlov
    Physics of Atomic Nuclei, 2004, 67 : 62 - 68
  • [10] The HSAB principle from a finite-temperature grand-canonical perspective
    Miranda-Quintana, Ramon Alain
    Kim, Taewon David
    Cardenas, Carlos
    Ayers, Paul W.
    THEORETICAL CHEMISTRY ACCOUNTS, 2017, 136 (12)